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Objective: The goal of this studywas to develop amodel that integrates imaging and clinical information observed
at lesion incidence for predicting the recovery of white matter lesions in multiple sclerosis (MS) patients.
Methods: Demographic, clinical, and magnetic resonance imaging (MRI) data were obtained from 60 subjects
with MS as part of a natural history study at the National Institute of Neurological Disorders and Stroke. A total
of 401 lesions met the inclusion criteria and were used in the study. Imaging features were extracted from the
intensity-normalized T1-weighted (T1w) and T2-weighted sequences as well as magnetization transfer ratio
(MTR) sequence acquired at lesion incidence. T1w andMTR signatures were also extracted from images acquired
one-year post-incidence. Imaging featureswere integratedwith clinical anddemographic data observed at lesion
incidence to create statistical prediction models for long-term damage within the lesion.
Validation: The performance of the T1w and MTR predictions was assessed in two ways: first, the predictive ac-
curacy was measured quantitatively using leave-one-lesion-out cross-validated (CV) mean-squared predictive
error. Then, to assess the prediction performance from the perspective of expert clinicians, three board-certified
MS clinicians were asked to individually score how similar the CV model-predicted one-year appearance was to
the true one-year appearance for a random sample of 100 lesions.
Results: The cross-validated root-mean-square predictive error was 0.95 for normalized T1w and 0.064 for MTR,
compared to the estimated measurement errors of 0.48 and 0.078 respectively. The three expert raters agreed
that T1w and MTR predictions closely resembled the true one-year follow-up appearance of the lesions in both
degree and pattern of recovery within lesions.
Conclusion: This study demonstrates that by using only information from a single visit at incidence, we can pre-
dict how a new lesion will recover using relatively simple statistical techniques. The potential to visualize the
likely course of recovery has implications for clinical decision-making, as well as trial enrichment.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central
nervous system, which is typically characterized by demyelinating le-
sions that occur in the brain and spinal cord. These lesions evolve dy-
namically from actively inflamed tissue over a period of months to
more stable demyelinated regions of acute long-term axonal injury
(Lassmann, 2013; Lassmann et al., 2007). A competing process of
remyelination is also known to occur to varying degrees in patients,
and has been documented in both relapsing-remitting and progressive
cases (Patrikios et al., 2006; Bramow et al., 2010). Both the destructive

and remyelinating processes are known to progress through the disease
course (Frischer et al., 2015), and are associated with disability and
morbidity. As therapeutics designed to promote tissue repair and
remyelination are being developed, sensitivemarkers for in vivo assess-
ment of these processes are increasingly important for studying thera-
peutic efficacy and patient management.

Magnetic resonance imaging (MRI) is a commonly used technique
for identifying lesions, particularly in the white matter of the brain
(Radü & Sahraian, 2008). The presence of new and active lesions is a
key factor in the diagnosis and monitoring of MS, and several MRI se-
quences have been demonstrated to be effective in measuring the se-
verity of these lesions (Polman et al., 2011; Sweeney et al., 2016;
Sweeney et al., 2013; Pike et al., 2000). In recent years, successful at-
tempts have been made to utilize quantitative methods in concert
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with MRI for the study of tissue damage in lesions. These techniques
have included the use of advanced quantitative MRI sequences includ-
ing T1 mapping (Larsson et al., 1989; Vrenken et al., 2006), magnetiza-
tion transfer imaging (van Waesberghe et al., 1998; van Waesberghe
et al., 1999), and diffusion tensor imaging (Narayanan et al., 1997;
Werring et al., 1999; Filippi et al., 2001), as well as statistical techniques
for modeling tissue damage using conventional MRI (Shinohara et al.,
2011; Mejia et al., 2015; Reich et al., 2015) and the development of
time-series models to examine lesion activity (Sweeney et al., 2016;
Meier et al., 2007; Meier & Guttmann, 2003; Meier & Guttmann, 2006).

Specifically, much research has engaged with the apparent paradox
related to the lack of coherence between the presence of lesions and clin-
ical disease measures (Barkhof, 2002). One recent study retrospectively
related the longitudinal behavior of lesions, as opposed to simply their
presence, to clinical covariates and treatment status (Sweeney et al.,
2016). Significant relationships between treatment and longitudinal be-
havior indicated that receiving disease-modifying therapy or steroids
was associated with a better healing trajectory within lesion tissue.
These findings signify the presence of potentially important relationships
between the repair processes in the brain, therapeutics, and disability.

Unfortunately, today there is still relatively little that can be deter-
mined in advance about the way specific lesions will recover, or the de-
gree to which they may be responsive to treatment. The ability to
visually examine the likely course of recovery for a given incident lesion
would have the potential to be useful in several settings. Specifically,
such visualizations could be a beneficial tool for physicians, providing
them important supplemental informationwhenmaking treatment de-
cisions. Additionally, knowledge of how patients' brains are likely to re-
cover from lesion damage could be beneficial in clinical trials, for which
advanced knowledge of lesion characteristics could inform recruitment
enrichment and trial design.

To build on the previous work, and to address the needs outlined
above, the current study attempted to develop a statistical model that
would be capable of prospectively predicting how lesions would heal
over the course of a year. In this paper, we discuss the development of
such prediction models for two outcome MRI modalities, we present
statistical and clinical measures of validity and prediction accuracy,
and we discuss the implications and potential next steps of this line of
research.

2. Methods

2.1. Image acquisition and preprocessing

Details of the image acquisition and preprocessing have been previ-
ously published (Sweeney et al., 2016) and are summarized in this sec-
tion. Whole-brain two-dimensional T2-weighted FLAIR, PD, T2, and
three-dimensional T1-weighted volumes were acquired in a 1.5 tesla
(T) MRI scanner (Signa Excite HDxt; GE Healthcare, Milwaukee, Wis-
consin) using the body coil for transmission. The 2D FLAIR, PD, and T2
volumes were acquired using fast-spin-echo sequences, and the 3D T1
volume was acquired using a gradient-echo sequence. All scanning pa-
rameters were clinically optimized for each acquired image.

For image preprocessing, we used Medical Image Processing Analy-
sis and Visualization (http://mipav.cit.nih.gov) and the Java Image Sci-
ence Toolkit (http://www.nitrc.org/projects/jist) (Lucas et al., 2010).
All images for each subject at each visit were interpolated to a voxel
size of 1 mm3 and rigidly co-registered longitudinally and across se-
quences to a template space (Fonov et al., 2011). To coregister the T1 im-
ages across study visits, a two-step procedure was applied: first,
subject-specific templates were generated by averaging after rigid
alignment of the T1 images to the MNI template. Second, all T1 images
were then realigned to the subject-specific templates. Finally, the addi-
tional MRI sequences were aligned to the T1 images within each study
visit and this transformation was composedwith the T1-based transfor-
mation to the subject-specific template.

Extracerebral voxels were removed using a skull-stripping proce-
dure (Carass et al., 2007) and the brain was automatically segmented
using the T1 and FLAIR images (Shiee et al., 2010) to produce a mask
of normal-appearingwhitematter (NAWM), or whitematter excluding
lesions. Intensity normalization was then conducted using z-scoring
based on the mean and variance of the variability in the NAWM
(Shinohara et al., 2011; Shinohara et al., 2014). After preprocessing,
studies were manually quality controlled by a researcher with over
five years' experience with structural MRI (EMS) and studies with mo-
tion or other artifacts were removed.

2.2. Patient demographics

For this study, 60 subjects diagnosed with MS were scanned be-
tween 2000 and 2008 on a monthly basis over a period of up to
5.5 years (mean = 2.2 years, sd = 1.2) as part of a natural history
study at the National Institute of Neurological Disorders and Stroke in
Bethesda, Maryland. To be included in the analysis, subjects were re-
quired to meet certain pre-specified inclusion criteria. Specifically,
only subjects with at least one new lesion during the observation period
were included, and these subjects were required to have been
rescanned at least twice 360 days after lesion incidence. 32 subjects
met these criteria and were included in the analyses. The 32 subjects
ranged from 18 to 60 years of age, with a mean age of 37 years (sd =
9). Of the 32 subjects, 11 were male and 21 were female. The majority
of the subjects (n = 27) were diagnosed with relapsing-remitting MS,
and the remaining five were characterized as secondary-progressive.
Subjectswere either untreated or treatedwith a variety of disease-mod-
ifying therapies during the observation period, including both FDA-ap-
proved therapies (Avonex, Betaseron, Daclizumab, and Rebif) and
experimental therapies.

2.3. Prediction model

2.3.1. Outcomes
The outcomes of interest in this study were 1) normalized T1-

weighted voxel intensity (nT1w) (Shinohara et al., 2014) and 2) MTR
voxel intensity approximately one-year post-incidence, and is denoted
by Ypost,i (v) for subject i in voxel v. Due to the noise inherent in both se-
quences, outcome variables were created by averaging the intensity of
each voxel at the visit immediately following the 360-day cutoff (re-
ferred to as the one-year visit), the visit prior to the one-year visit
(mean = 10.6 months from incidence, sd = 1.3 months), and the visit
following the one-year visit. Because no change is expected in the lesion
after that length of time, this average only reduced variability due to
measurement error (Meier et al., 2007). Thus, the average score repre-
sents a more precise estimate of true voxel intensity than the one-
year visit intensity alone.

2.3.2. Predictors
A dataset made up of scan data and relevant demographic variables

was created to predict the one-year post-incidence voxel intensities. For
each voxel, this included the MTR as well as the nFLAIR, nPD, nT2w, and
pre- and post-contrast nT1w intensities at incidence, denoted by
Yinc,i (v). After applying a 3D Gaussian smoother with variance param-
eter 3 mm and width 5 mm, each voxel's blurred intensities on the five
scanmodalities,GYinc;i ðvÞ, were also included, aswell as the distance, in
number of voxels, from the voxel to the nearest boundary of the lesion,
di(v), and the size, in number of voxels, of the lesion, si(v). Additional
predictors Xi included were the patient's age, sex, disease subtype, ex-
panded disability status score (EDSS; (Kurtzke, 1983)), disease-modify-
ing treatment status (treated versus untreated, with use of one or more
therapies counting as treated), and steroid status (receiving steroids
versus not on steroids) at the time of lesion incidence.
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