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Clinical research based on neuroimaging data has benefited from machine learning methods, which have the
ability to provide individualized predictions and to account for the interaction among units of information in
the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury
presents an additional challenge, especially in conditions like stroke, due to the high variability across patients
regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain
damage information into features to be used as input to learning algorithms is still an open question. One of
the most common approaches to capture regional information from brain injury is to obtain the lesion load
per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However,
no systematic evaluation has yet been performed to compare this approach with using patterns of voxels
(i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian
Process Regression to decodemotor scores in 50 chronic stroke patients based solely on data derived from struc-
tural MRI. For both approacheswe compared different ways to delimit anatomical areas: regions of interest from
an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with amotor task in healthy con-
trols and regions selected using lesion-symptommapping. Our analysis showed that extracting features through
patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per
region. In particular, from the differentways to delimit anatomical areas compared, the best performancewas ob-
tained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract.
These results will inform the appropriate methodology for predicting long term motor outcomes from early
post-stroke structural brain imaging.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

The ability to predict long term outcome after stroke is urgently re-
quired in order to facilitate a stratified approach to clinical decision
making (Ward, 2015). It has longbeen known that information encoded
in brain lesions (e.g. extent and location) can explain variability in post-
stroke outcomes (Bayona et al., 2005; Geva et al., 2011; Särkämö et al.,
2009; Schiemanck et al., 2005; Yang et al., 2008; Zhu et al., 2010), but
no approaches have been routinely incorporated into clinical practice.

Machine learning (ML) techniques are potentially useful for clinical
applications, aiming to provide sensitive and specific diagnostic and
prognostic indicators for individuals, as opposed to analysing statistical
group differences (Wang et al., 2010). In neuroimaging, clinical applica-
tions of ML methods have initially focused mainly on binary classifica-
tion of disease states (Davatzikos et al., 2005; Teipel et al., 2007; Fu et
al., 2008; Klöppel et al., 2008; Vemuri et al., 2010). More recently,

decoding of outcomes represented by continuous scales has also be-
come increasingly common in several neurological and psychiatric con-
ditions through predictive multivariate regression methods (Cohen et
al., 2011).

The extraction of features from brain images in a way that is mean-
ingfully related to the clinical condition being studied is a fundamental
step in a predictive analysis framework. In the context of stroke, feature
extraction from structural neuroimaging is additionally challenging due
to the high variability in anatomical location and extension of brain in-
jury. Although lesion characteristics can potentially contribute towards
making accurate predictions of the likely level of impairment and recov-
ery, there is currently no consensus on how to quantify these
characteristics.

Progress has been made in predicting language outcomes using fea-
tures derived from stroke lesions (Payabvash et al., 2010; Hope et al.,
2013, 2015) but predicting motor outcomes is lagging behind. One of
the most common approaches to quantify characteristics from lesions
is summarizing the proportion of voxels in each region of interest
(ROI) that are considered to be part of a lesion. This information is com-
monly referred to as lesion load and it is obtained using anatomical
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masks to define the ROIs and a method to segment the lesions, either
manually (Kim et al., 2014) or automatically (Hope et al., 2013, 2015).
Recently, voxel-based lesion symptom mapping (VLSM, (Bates et al.,
2003)) has also been proposed as a way to extract features from stroke
lesions to be used as input to machine learningmodels. Voxel-based le-
sion symptom values are obtained for each voxel through a statistical
test on the continuous scores representing the symptom between two
groups (which are defined according to the presence or absence of a le-
sion in that particular voxel). The voxelwise maps resulting from this
method are used as a way to define a mask to restrict voxels (Munsch
et al., 2015) or to build symptom or condition specific ROIs (Forkert et
al., 2015).

In this paper we have directly compared a range of approaches for
assessing the relationship between structural brain damage and long
term motor outcome in chronic stroke patients. Using structural MRI
images from 50 patients we derived lesion probability images (i.e., im-
ages where each voxel is assigned a value between 0 and 1 representing
the likelihood of being part of injured tissue). We wanted to investigate
which features have the highest power to decode the individual level of
motor impairment. There are two key questions: firstly, what type of
data should be extracted from the images? Secondly, which are the
key brain regions from which data should be extracted? To investigate
the first question, we used two strategies to extract information from
images: i) patterns of voxels, where each feature corresponds to a single
voxel representing lesion probability, and ii) anatomical summariza-
tion, where each feature corresponds to the lesion load in an ROI. To in-
vestigate the second question, we employed a number of different
approaches to define anatomical regions: i) regions of interest (ROIs)
from an anatomical atlas; ii) a mask delimiting the corticospinal tract
(CST); iii) combination of all ROIs and the CST; iv) a subset of the ROIs
expected to be related to motor function; v) combination of the subset
of ROIs and the CST; vi) active voxels from fMRI acquired with a
motor task in healthy controls; vii) a mask restricting voxels to lesions;
viii) voxels selected through lesion-symptommapping. Additionally,we
performed a secondary analysis, applyingmultiple kernel learning tech-
niques using kernels extracted from brain regions to investigate the
possibility of assessing the relevance of each anatomical pattern.

2. Material and methods

2.1. Study population

Fifty patients that had their first stroke at least three months before
the collection of the data (mean 29.1, std 31.1 months) participated in
the study. The patients had mean age 54.2 years (std 12.6), Seventeen
patients were female and in 18 patients the right hand was affected.
Complete demographic and clinical characteristics of each patient can
be found in the Supplementarymaterial (Table S1). The extent and loca-
tion of the lesions for each patient (Fig. S1) is also presented. A control
groupwas composed by 23 age-matched healthy subjectswho reported
no history of neurological or psychiatric illness, vascular disease or hy-
pertension. All subjects provided full written consent in accordance
with the Declaration of Helsinki. The study was approved by the Joint
Ethics Committee of the UCL Institute of Neurology, The National Hospi-
tal for Neurology and Neurosurgery and UCL Hospitals NHS Foundation
Trust.

2.1.1. Motor scores
Measures of motor impairment in the contralesional upper limb

were obtained using four different assessment scales: Action Research
Arm Test (ARAT) (Lyle, 1981), grip strength (GS) (Sunderland et al.,
1989), Motricity Index (MI) (Bohannon, 1999) and Nine-Hole Peg Test
(NHPT) (Mathiowetz et al., 1985).

As the differentmotor scores are correlated but also complementary,
a single representative measure was calculated using principal compo-
nent analysis (PCA). Considering Y as a matrix of 50 examples and 4

labels (corresponding to the number of patients and motor scores, re-
spectively), the PCA was obtained using the following steps:

1. Calculate the mean of each score across patients and subtract it from
Y (zero mean Y);

2. Obtain the covariance matrix from zero mean Y (cov zero mean Y);
3. Find the eigenvalues of cov zero mean Y.

A vector y = [y1, …, ym] where m is the number of subjects repre-
sents the first principal component (FPC) of the four scores, which ac-
counts for the greatest possible variance across them. This approach
has the advantage of avoiding floor and ceiling effects encountered
with individual measures.

2.2. Images acquisition and pre-processing

T1-weighted high resolution magnetic resonance images were ac-
quired using a 3 T Allegra system (Siemens AG, Erlangen, Germany)
with the following protocol: number of slices = 176, slice thickness =
1 mm, matrix size = 224 × 256, in-plane resolution = 1 mm × 1 mm.

The origin of each image was set at the anterior commissure. Images
from patients that had injury predominantly in the left hemisphere
were flipped in relation to the mid-sagittal plane so that all scans
presented lesion in the right hemisphere. Images from all subjects
were segmented into grey matter, white matter, cerebrospinal
fluid and then normalized using the New Segment routine in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/).

Lesion probability images were obtained from the high-resolution
T1-weighted volumetric MRI scans using an automatic method for de-
tection of outlier voxels (Seghier et al., 2008). This method is based on
the assumption that lesions are characterized as atypical voxels regard-
ing expected brain tissues (greymatter, whitematter and cerebrospinal
fluid). The characterization of tissues uses the unified segmentation-
normalization approach (Ashburner and Friston, 2005) modified to in-
clude an extra tissue to account for the perturbation introduced by le-
sions. Grey and white matter segmented tissues from patients are
compared with the corresponding tissues from healthy control subjects
in a voxel by voxel way. As a result, each voxel is represented by a value
between 0 and 1 that quantifies the likelihood of it being part of injured
tissue.

2.3. Segmentation of lesions

Fig. 1 presents the steps that were performed to obtain binary im-
ages of the lesions. Images representing lesion probability were derived
from T1 anatomical images according with the procedure described in
the previous section. In order to segment the lesions we applied a
threshold selecting the voxels with probability of being part of injured
tissue N0.3, producing binary images. Finally we selected only contigu-
ous clusters with 100 or more voxels. See (Seghier et al., 2008) for a de-
tailed explanation regarding the rationale behind both parameters
(threshold value and cluster size) and comparisonwithmanually traced
lesions. We also performed additional tests to check the adequacy of
these parameters to segment lesions in our images (Supplementaryma-
terial, item 2).

Fig. 2 shows examples of lesions segmented according to the
described approach. The binary images corresponding to lesions
(visualized in blue) were overlaid on the lesion probability images
(visualized in grayscale).

Fig. 3 (panel a) presents a map illustrating the overlap of segmented
lesions obtained using our approach across all patients. The colour map
represents the incidence of lesions in each voxel, ranging from purple
(lesion in 1 subject only) to red (lesion in 26 out of the 50 subjects).
Fig. 3 (panel b) presents a plot showing the volume of the segmented le-
sion for each patient according to the procedure described above. This
plot illustrates the variability of the sample regarding the extent of the
lesions across the patients. In the Supplementary material, we provide
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