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In this study, the closed-form solution for the buckling of an inhomogeneous simply supported column thatwasun-
covered by the noted British engineer Duncan in 1937, is first derived in a straightforward manner. It deals with
buckling of a centrally compressed inhomogeneous column. It is also found that there are several other columns
with variable axial functionally graded material (FGM) that share the same qualities as Duncan's column. It is
then shown that themode postulated byW.J. Duncan (1894–1970), FRS and the newly foundmodes, have a greater
validity, namely the freely vibrating beam, albeit with different flexural rigidity than the centrally compressed one,
may possess the samebucklingmode. It is demonstrated also that there exists an inhomogeneous beamunder axial
compression whose vibration mode coincides with the buckling modes in the previous cases.

© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Duncan [3] devoted his study to efficacy of the Bubnov-Galerkin
method. Inter alia, he communicated, without derivation, closed-form
solution for buckling of inhomogeneous columns. As is known, the closed
form solutions for inhomogeneous structures are extremely rare.
Therefore, it is interesting to know how Duncan obtained his solution.
Moreover, a pertinent question arises if there are other columns or
beams for which Duncan's mode shape is valid, or if there are other
similar examples.

This study addresses above issues. It shows how one can derive
Duncan's classic solution, and constructs analogous solutions for the vi-
bration problems. Remarkably, it turns out, that there exists a vibrating
column whose vibration mode coincides with Duncan's bucklingmode.
Note thatmonograph by Elishakoff [5] contains analysis for other candi-
date mode shapes of beams in vibratory or buckling conditions. The
present study is apparently the first one that addresses Duncan's
mode shape directly.

Duncan [3] proposed that the shape of the mode be taken as

W ξð Þ ¼ 7ξ−10ξ3 þ 3ξ5 ð1Þ

and this shape satisfies the simple support conditions at the two ends.
Later on, Elishakoff [5] suggested another mode

W ξð Þ ¼ ξ−2ξ3 þ ξ4 ð2Þ

which has similar properties. These two case can be realized with spatial
distribution of material properties that will be given below. The question
that one may ask is if there exist other simple shapes that have similar
properties. These new caseswill yield different buckling loads and spatial
distribution of the material properties. In the next section a general deri-
vation is presented for the problem. Other recent studies of inhomoge-
neous beams and columns include those of Akulenko and Nesterov [1],
Caruntu [2], Ece, Ayadoğlu and Taskin [4], Sina and Navazi [10], Gilat,
Caliò and Elishakoff [6], Huang and Li [7], Huang and Luo [8], Zarrinzadeh,
Attarnejad and Shahba [11], and Maròti [9], among others.

2. Derivation of Duncan's solution and other new solutions

Consider the governing differential equation for the buckling of
centrally compressed inhomogeneous column simply supported at its
two ends:

D ξð Þ d
2W

dξ2
þ PcrL

2W ¼ 0: ð3Þ

One can show that the function in Eq. (1), postulated by Duncan [3]
satisfies the boundary conditions of the simple supports

W 0ð Þ ¼ D ξð ÞW″ 0ð Þ ¼ W 1ð Þ ¼ D ξð ÞW″ 1ð Þ ¼ 0 ð4Þ

where the prime denotes the differentiation with respect to ξ. We pose
the following question: Is there an inhomogeneous column that has
expression in Eq. (1) as its buckling mode? To answer this question, we
observe that the second term in Eq. (1), namely, PcrL2w represents a
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fifth order polynomial. The second derivative of the bucklingmode in the
first term is a third order polynomial. Therefore, in order for the first term
D(ξ)w″ to be also a fifth order polynomial, it is sufficient thatD(ξ) is a sec-
ond order polynomial. Hence, we seek D(ξ)in the following form

D ξð Þ ¼ d0 þ d1ξþ d2ξ
2
: ð5Þ

Now we look for other possible fifth order polynomials that can be
the mode shape for buckling of a simply supported beam. Then we
shall try the following mode

W ξð Þ ¼ w0 þw1ξþw2ξ
2 þw3ξ

3 þw4ξ
4 þw5ξ

5
: ð6Þ

Since we have a simple support at ξ=0wemust havew0=w2=0.
Then we substitute Eqs. (5) and (6) into Eq. (3) and collect terms with
the same power of ξ and obtain the following five equations:

6w3 þ PL2w1 ¼ 0 ð7Þ

12w4 þ 6w3d1 ¼ 0 ð8Þ

6w3d2 þ 12w4d1 þ 20w5 þ PL2w3 ¼ 0 ð9Þ

20w5d1 þ 12w4d2 þ PL2w4 ¼ 0 ð10Þ

20w5d2 þ PL2w5 ¼ 0 ð11Þ

and twomore equations are obtained from the requirement of zero de-
flection and moment at ξ = 1 as

w1 þw3 þw4 þw5 ¼ 0; ð12Þ

6w3 þ 12w4 þ 20w5 ¼ 0: ð13Þ

Eqs. ((7)–(13)) represent a set of 7 nonlinear equations with seven
unknownsw1 ,w3 ,w4 ,w5 ,d1 ,d2 , and P. We obtain four solutions (and
one trivial solution where all the unknowns are zero).

a. First solution—Duncan's [3] mode shape

W ξð Þ ¼ 7ξ−10ξ3 þ 3ξ5; D ξð Þ ¼ d0 1−
3
7
ξ2

� �
; Pcr ¼ 60d0

7L2
: ð14Þ

b. Second solution—Elishakoff's [5] mode shape

W ξð Þ ¼ ξ−2ξ3 þ ξ4; D ξð Þ ¼ d0 1þ ξ−ξ2
� �

; Pcr ¼ 12d0
L2

: ð15Þ

c. Third solution—First new mode shape

W ξð Þ ¼ 8
15

ξ−
4
3
ξ3 þ ξ4−

1
5
ξ5; D ξð Þ ¼ d0 1þ 3

2
ξ−

3
4
ξ2

� �
; Pcr ¼ 15d0

L2
:

ð16Þ

d. Fourth solution—Second new mode shape

W ξð Þ ¼ 1
15

ξ−
2
3
ξ3 þ ξ4−

2
5
ξ5; D ξð Þ ¼ d0 1þ 3ξ−3ξ2

� �
; Pcr ¼ 60d0

L2
:

ð17Þ

These four solutions are listed in Table 1with themodes and the cor-
responding stiffness distribution along the beam. It is evident that

solution (d) above is the second buckling mode as can be also seen
from the value of the buckling load that is much higher than the value
of the three other solutions. Additionally, the associated mode shape
possesses an internal node, serving as an indication that one deals
with the second mode-shape.

3. Comparison with uniform column

Let us compare the derived buckling loadwith that of the associated
uniform column. We can introduce the latter columns as that with
average flexural rigidity, defined as

Dave ¼
Z1
0

D ξð Þdξ: ð18Þ

In the Duncan's [3] example, the average flexural rigidity, in view of
Eq. (14) is

Dave ¼ 6
7
d0: ð19Þ

Thus, d0=7/6Dave. The buckling load is from Eq. (14)

Pcr ¼ 10Dave

L2
ð20Þ

which is extremely close, from above, to the Euler buckling load of the
uniform column with flexural rigidity Dave:

Pcr ¼ π2Dave

L2
: ð21Þ

For the second case (Elishakoff's shape) we have

Dave ¼ 7
6
d0: ð22Þ

The buckling load is from Eq. (15)

Pcr ¼ 72Dave

7L2
ð23Þ

which is 4.2% higher than the uniform column.
For the third case (the first new solution) we have

Dave ¼ 3
2
d0: ð24Þ

The buckling load is from Eq. (16)

Pcr ¼ 10Dave

L2
ð25Þ

exactly as for the Duncan case.
For the fourth case (second new solution) we have again

Dave ¼ 3
2
d0: ð26Þ

The buckling load is from Eq. (17)

Pcr ¼ 40Dave

L2
ð27Þ

which is the same as the Duncan solution but this time for the second
mode. Summarizing these results we see that the Elishakoff mode is
the best (by a very slight margin).
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