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a  b  s  t r  a  c  t

This  paper  uses  a stochastic  simulation  methodology  to generate  a schedule  of  daily  travel  and  charging
profiles  for  a population  of  electric  vehicles  with  GPS  travel  data  collected  during  an  electric  vehicle
demonstration  trial.  The  dependence  structure  between  six  variables  is modelled  using  a non-parametric
copula  function.  Then  an  iterative  method  of  conditional  distributions  with  a Bayesian  inference  is  used  to
generate  travel  patterns  that  comply  with  the  uncertainty  of  the inputs.  At  each  destination  a  probabilistic
charging  model  is used  to  translate  the  travel patterns  of the electric  vehicles  (EVs)  into  the  respective
power  demand  of  the  vehicles.  These  synthetic  datasets  capture  the  degree  of  uncertainty  of the  travel
and  charging  behaviour  of EVs  (contrary  to single  realisations)  and  are  scalable  to  different  EV populations
(allowing  uncertainty  reduction  effects  in  large  populations).  Such  charging  profiles  would  be  useful  to
electric  vehicle  grid  integration  studies  such  as aggregated  power  demand,  power  systems  services  and
charging optimisation  analyses.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Electric vehicles (EVs) coupled with low carbon electricity,
have the potential to contribute to climate change mitigation.
The literature demonstrates that EVs have the potential to
reduce greenhouse gas (GHG) emissions in several countries. Orsi,
Muratori, Rocco, Colombo, and Rizzoni (2016) proposed an energy-
based well-to-wheels analysis and analysed different fuel types
for Brazil, China, France, Italy and the United States, finding that
low-carbon electricity mix  electric vehicles reach almost-zero CO2
emissions. They produce less effective CO2 per kilometre (i.e.
including CO2 emitted from electricity generation) travelled and
produce no local pollution such as PM10 and NO2. Even in dirty
power systems, if a power system has enough efficient natural
gas-fired generating capacity (or any other technology with low
emissions rates) to serve the PHEV charging loads, PHEVs could be
cost-effectively accommodated without a net increase in emissions
(Sioshansi & Miller, 2011).

EVs are a sustainable alternative to internal combustion engine
vehicles (ICEVs), provided that the energy used for charging is
generated by renewable sources or low carbon fuels. However, elec-
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tricity generation from renewable sources is dependent on weather
conditions in the case of wind energy and as a consequence there
is a high degree of variability in power generation. In the absence
of large-scale energy storage technology, electricity must be con-
sumed at the time of generation. In the case of wind energy, there is
less flexibility to produce additional power, if weather conditions
do not permit. Weldon, Morrissey, Brady, and O’Mahony (2016)
and Weldon, Morrissey, and O’Mahony (2016) showed that the
environmental impacts of EVs are highly influenced by the charg-
ing behaviours of individual users, and night-time charging was
found to produce the largest environmental impact as a result
of grid management decisions. Li et al. (2016) studied electric
vehicle deployment in China and found that controlled charging
results in more CO2 emissions associated with EVs than uncon-
trolled charging, as it tends to feed EVs with electricity produced
by cheap yet low-efficiency coal power plants located in regions
where coal prices are low. In addition, in times of low demand and
high availability of renewable electricity the full economic benefits
of renewable energy may not be achieved. Ghasemi et al. (2016)
proposes an optimised framework to use the potential of EVs and
battery energy storage to manage the possible imbalance in wind
farms.

System operators are responsible for managing power system
services and are constantly matching supply with demand. It is
generally accepted that the charging of a large population of EVs
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will have two major effects on the grid; it will increase the overall
power load needed and it will increase the load on local distri-
bution networks. For example, Morrissey et al. (2016) found that
electric vehicle users prefer to charge at home in the evening at
peak electricity demand times. Either of these effects could become
the limiting factor but it is believed that the local load distribu-
tion problems will become prevalent sooner than the more general
overall power supply issue (Clement-Nyns, Haesen, & Driesen,
2010; Denholm & Short, 2006; Duvall, Knipping, & Alexander, 2007;
Liu, Dow, & Liu, 2011). However, the uncontrolled charging of
a large population of EVs could increase peak demand substan-
tially. Babrowski, Heinrichs, Jochem, and Fichtner (2016) identified
a large potential for load shifting through controlled charging.
Neaimeh et al. (2016) demonstrated the spatial and temporal diver-
sity of EV charging demand to reduce the estimated impacts on the
distribution networks. Peaking at certain times of the day has been
observed by EV users in a number of EV trials (Robinson, Blythe, Bell,
Hubner, & Hill, 2013; Weldon, Morrissey, Brady, & O’Mahony, 2016;
Weldon, Morrissey, & O’Mahony, 2016). System operators must
largely rely on conventional generators (fossil fuels) to meet this
demand. This would reduce the potential GHG reduction benefits.
Moreover, increases in the peak demand could require transmission
capacity expansion. To mitigate these concerns, controlled charg-
ing of EVs may  need to be implemented. Yagcitekin and Uzunoglu
(2016) proposed a smart charging management algorithm strat-
egy that successfully routes electric vehicles to the most suitable
charging point, decreases the charging costs and prevents the over-
loading of transformers.

In order to support policy decisions, the impacts of EVs on the
power system needs to be evaluated. In order to achieve this, reli-
able models capable of translating the travel patterns of a large
population of EVs into the respective power demand are needed.
The complexity and stochastic nature of travel patterns point to a
stochastic model to satisfactorily model travel patterns. The effect
of the large-scale integration of EVs into the power grid has been
studied in several papers (Coelho et al., 2016; Dallinger, Krampe,
& Wietschel, 2011; Di, Aliprantis, & Gkritza, 2011; Kristoffersen,
Capion, & Meibom, 2011; Lojowska, Kurowicka, Papaefthymiou, &
Van Der Sluis, 2012). Issues such as peak load, network losses and
cost minimisation have been analysed, as well as the impacts on
emissions (Rangaraju, De Vroey, Messagie, Mertens, & van Mierlo,
2015). However, the majority of the early studies have used a deter-
ministic approach to model travel patterns, using collected data
directly or expected values and averages (Di et al., 2011; Mullan,
Harries, Bräunl, & Whitely, 2011; Weiller, 2011). This approach fails
to capture the stochastic nature of travel behaviour. Observed vehi-
cle travel patterns have been reported in many studies (Golob &
Gould, 1998). Stochastic modelling of driving patterns has received
more attention recently (Green, Lingfeng, & Alam, 2010). Muratori
et al. (2013) proposed a large-scale stochastic model of driving pat-
terns based on user behaviour. Their model enables evaluation of
the impact of plug-in electric vehicles on the electric grid especially
at the distribution level and it can be used as a tool to compare dif-
ferent vehicle types. Muratori and Rizzoni (2016) used the model
to estimate residential demand using a novel bottom-up approach
that quantifies consumer energy use behaviour, providing an accu-
rate estimation of the actual amount of controllable resources.

Widén and Wäckelgard (2010) used a model to generate both
synthetic activity sequences of individual household members,
including occupancy rates, and domestic electricity demand based
on these patterns. McKenna and Thomson (2016) developed a
high-resolution stochastic model that can model domestic energy
demands within the broader field of urban energy systems analy-
sis. Arghira, Hawarah, Ploix, and Jacomino (2012) used a predictive
model to estimate the energy consumption of appliances in homes
using a full year of data for 100 households in France. Xydas et al.

(2016) developed a fuzzy based model to estimate the poten-
tial relative risk level of EVs charging demand among different
geographical areas independent of their actual corresponding dis-
tribution networks. Paterakis and Gibescu (2016) developed a
methodology to derive power profiles for EV parking lots so that
different operational strategies may  be used in order to achieve
operational or economic benefits from the perspective of the EV
parking lot owner.

Lojowska et al. (2012) used a travel survey dataset relating to
ICEs to model the power demands of EVs in the Netherlands under
the scenario of uncontrolled domestic charging. The travel patterns
of the EVs were modelled using three variables: the time a vehicle
departs home, the time a vehicle arrives home and the overall dis-
tance travelled during the day. The dependence structure between
the variables was modelled using a normal copula function. The
load due to EVs was  computed based on the combination of simu-
lated commuting patterns with the charging profile of a typical EV
battery. The model focused on journeys to and from the home (i.e.
it excluded intermediate journeys) and assumed that the vehicles
began charging immediately upon arrival home.

The work presented here builds on the work of Lojowska et al.
(2012) by using data downloaded from EVs on the driving patterns
of users in the model development, it includes travel throughout
the entire day, in addition to only trips starting and ending at the
home, and the work assesses the accuracy of the model against
real world data. The novel aspects of the work presented in this
paper include the use of real EV data to inform the modelling pro-
cess and the focus at trip level; a level that is more useful for grid
managers. An additional novel aspect to try to better replicate real
world behaviour is the use of conditional probabilities of a number
of variables, state of charge (SOC), parking time and trip number, to
determine whether an EV will be charged after a trip or not. By its
stochastic nature it offers a more realistic degree of variability that
improves on average behavioural assumptions made in previous
work.

2. Background

There are generally two  ways in which to investigate the travel
patterns and charging behaviour of a large population of EVs. One
method would be to conduct a large scale EV trial and to use the
results from that trial to inform and deduce charging patterns and
power demand predictions. The second method would be to model
a fleet of EVs and to use the results of the model as an indication of
the power demands of the EVs.

For the second method, ideally a micro-simulation package
combined with a charging decision algorithm would be used to
achieve this. However, given the number of vehicles (e.g. 200,000)
and the size of the area of interest it would be computationally
intensive to model and predict charging patterns through direct
simulation on an individual basis (Hill, Blythe, & Higgins, 2012). In
addition, currently no charging decision algorithm exists in liter-
ature, although research is being conducted in the area (Axsen &
Kurani, 2010). Another option would be to scale the data collected
in a large scale trial of EVs. However, these data could only be used
to model the circumstances in which the data was  collected and
the explanatory power of the data would be limited to the fleet
composition for which the data exists.

A stochastic model would be computationally less intensive
than micro-simulation and would have more predictive power than
just the use of historic data. In addition, as outlined in the introduc-
tion, driving patterns are stochastic in nature and as a consequence,
the power demand of EVs should inherit this randomness. Recently
several studies have examined the effect of EVs on power sys-
tem demand and their ability to provide power system services.
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