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a b s t r a c t

The present study was aimed to investigate the influence of forcing frequency on nonlinear dynamic
pulse buckling of imperfect rectangular plates with six different boundary conditions. The Galerkin's
approximate method on the basis of polynomial and trigonometric mode shape functions is used to
reduce the governing nonlinear partial differential equations to ordinary nonlinear differential equations.
Moreover a numerical study of these governing equations is accomplished by Runge Kutta integration
methods. The convergence of the polynomial and trigonometric mod shape functions are investigated to
compute the dynamic response of plate. The effects of frequency of impulse loading and boundary
conditions on the deflection histories of plate are studied. The dynamic response of plate subjected to
impulsive loading with different forcing frequency is compared to results obtained by exponential im-
pulsive loading. The results show that, by increasing the forcing frequency of impulsive loading, the
maximum displacement of plate increases and converge with lower values to response of plate subjected
to exponential impulse. Moreover, different boundary conditions and various pulse functions have sig-
nificant influence on the dynamic response of the plate.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the advancement of industry, for the widespread appli-
cations of plates, the availability, durability, reliability, weight and
strength, are known as the most important factors in optimum
engineering design. In order to achieve an optimal design, me-
chanical properties and behavior of such structures in the pre-
sence of different loading conditions should be carefully in-
vestigated. Three types of loads, including lateral, axial and com-
bined axial and lateral, can be applied to a plate. Due to the im-
portance of buckling phenomena in the optimum design of plate,
extensive buckling analysis has been carried out into two main
categories, i.e. static buckling and dynamic buckling. Beams, col-
umns, shells and plates are basic structural elements for Static
buckling analysis and dynamic buckling analysis investigation [1–
41]. Dynamic buckling response of plates subjected to impulsive
loading has been the subject of considerable research interest.

Zizicas [27] was one of the first scientists investigated this subject.
Neglecting the in-plane inertia effects in this research, the author stu-
died the theoretical solution for simply supported plate under in-plane
time-dependent load. Budiansky and Hutchinson [28,29] studied the
simple imperfection-sensitive model to investigate the dynamical

ability of structures. Danielson [30] developed the imperfection-sensi-
tive model to include the effect of axial inertia. Applying a two-timing
method the governing equations were solved to analysis. The nonlinear
dynamic buckling behavior of imperfect rectangular plates under in-
plane compressive step loads was studied theoretically by using the
consistent perturbation technique. It was shown that, in pulse buckling,
the in-plane inertia can be disregarded whereas in the latter, it plays an
important role for non-slender plates [31]. Weller et al. [32] studied
analytical investigations to calculate the dynamic load amplification
factor (DLF) of metal beams and plates exposed to axial in-plane impact
compressive loads by using the ADINA computer code.

The effect of anisotropic material properties on pulse buckling of
imperfect rectangular plates under different sinusoidal pulse loading
including quasi-static, dynamic and impulsive was investigated by
Ari-Gur [33]. The results of this research showed that for a range of
loading frequencies close to the fundamental frequency of the plate,
the critical dynamic buckling loads were lower than the static ones.

Cui et al. [34] investigated the experimental dynamic buckling testes
of rectangular plates with different boundary conditions under fluid-
solid slamming. Using a stress failure criterion, the dynamic buckling of
simply supported plates subjected to in-plane sinusoidal impact, rec-
tangular and triangular pulses were studied. The effects of geometric
dimensions, pulse functions, initial imperfections and limit stress of the
material were perused in Ref. [35]. Cui et al. [36] carried out the nu-
merical investigations of imperfect rectangular plate with different
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boundary conditions subjected to intermediate-velocity impact loads by
using the computer code ABAQUS. The effect of initial imperfections,
boundary conditions, dynamic load durations, and the hardening ratio
of plate material on the dynamic buckling characteristics of the plates
were also investigated. By employing the third-order shear deformation
plate theory, Ma and Wang [37] solved the axisymmetric bending and
buckling problems of functionally graded circular plates. It was shown
that the first-order shear deformation plate theory results have enough
accuracy and a much higher order and more complex plate theory was
not necessary for such a kind of problem. Zenkour [38] showed that the
classic plate theory, first-order shear deformation plate theory and
third-order shear deformation plate theory results were confirmed by
the second-order shear deformation plate theory obtained results. The
dynamic buckling of thin-walled structures such as plates and beam-
columns with open cross-section under compressive rectangular pulse
loading was studied by Kubiak [39]. Meichael et al. [40] investigated a
new refined hyperbolic shear deformation theory by using the Navier's
solution technique for the buckling and free vibration analysis of FGM
sandwich plates. The obtained results were validated by using classic
plate theory, first-order, second-order and third-order shear deforma-
tion plate theory, parabolic shear deformation theory and 3D elasticity
theory results. Kubiak [41] investigated the buckling and postbuckling
response of thin plates and thin-walled structures with flat walls, under
static and dynamic loading. The nonlinear dynamic pulse buckling of
imperfect rectangular plate subjected to sinusoidal, exponential,
damping and rectangular pulse functions with six different boundary
conditions were investigated by Darvizeh et al. [42].

In this article, the effect of forcing frequency on nonlinear dy-
namic pulse buckling of imperfect rectangular plate with different
boundary conditions is investigated. For this purpose, based on von
Karman's nonlinear deformation theory, the nonlinear dynamic
buckling governing equation of isotropic imperfect rectangular
plate subjected to exponential-sinusoidal and exponential im-
pulsive loading are derived through Hamilton's principle. The Ga-
lerkin method based on the polynomial and trigonometric Navier's
double Fourier series is applied to transform the governing non-
linear partial differential equations to ordinary nonlinear differ-
ential equations and Runge Kutta method is used to obtain the
displacement field. The convergence of the polynomial and trigo-
nometric mod shape functions are investigated to compute the
dynamic response of plate. The effects of frequency of impulse
loading and six different boundary conditions on the deflection
histories of plate are studied. The six different boundary conditions
include SSSS, CSSS, CCSS, CSCS, CCCS and CCCC. In which S and C
represent the simply supported and clamped boundary conditions
for rectangular plates, respectively. The dynamic response of plate
subjected to impulsive loading with different forcing frequency is
compared to results obtained by exponential impulsive loading. The
present paper extends the previous works [42] to investigate the
effect of forcing frequency on nonlinear dynamic buckling of im-
perfect rectangular plates.

2. Governing equations

Consider an imperfect rectangular plate of thin uniform thickness
h and length a, width b subjected to pulse loading as shown in Fig. 1.
The displacements of an arbitrary point of coordinates (x, y) on the
middle surface of the plate are denoted by u, v, w and initial im-
perfection, w0 in the x, y and out-of-plane (z) directions, respectively.
Considering initial imperfection, the Von Karman's nonlinear strain–
displacement relationships can be written as
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The generalized Hooke's law constitutive equations in the case
of in-plane stress-strain components are given by
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In Eqs. (4)–(6), E is Young's modulus and ν is Poisson's ratio.
The total potential energy of a rectangular plate on an elastic
foundation is expressed as
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where U represents the strain energy of the laminate, T the kinetic
energy of the plate and W the potential energy.
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Applying Hamilton principle along with varaitional method the
dynamic buckling equation of motion for the lateral deflection can be
derived.
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is the flexural rigidity of the plate. Considering the

general mid plane strain-displacement of imperfect plate and by ap-
plying differentiating εx twice respect to y, εy twice respect to x and εxy

respect to x and y as following
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Fig. 1. Geometry and loading conditions of rectangular plate.
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