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a b s t r a c t

This study aims to optimise the cross-sectional shape of singly-symmetric, open-section and simply-
supported cold-formed steel (CFS) beams and beam-columns. No manufacturing or assembly constraints
are considered. The previously developed augmented Lagrangian Genetic Algorithm (GA), referred to as
the “self-shape” optimisation algorithm, is used herein. Fully restrained and unrestrained beams against
lateral deflection and twist, as well as unrestrained beam-columns are optimised. Various combinations
of axial compressive load and bending moment are analysed for the beam-columns. The Direct Strength
Method (DSM) is used to evaluate the nominal member compressive and bending capacities. The ac-
curacy of the automated rules, developed in the literature to determine the elastic local and distortional
axial buckling stresses from Finite Strip signature curves, is verified herein to estimate the elastic bending
buckling stresses. The optimised cross-sectional shapes are presented for all cases and the evolution of
the unrestrained shapes from pure axial compression to pure bending is discussed.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cold-formed steel (CFS) members are intensively used in the
construction industry due to their ease of erection and low
weight-to-capacity ratio [1]. Their structural efficiency lies in the
versatility of the cross-sectional shapes that enhances the strength
by controlling the three fundamental buckling modes, i.e. local,
distortional and global. Local buckling is enhanced in practice by
adding wall stiffeners, while lip stiffeners and rear flanges greatly
influence distortional buckling [2].

Improving the overall cross-sectional shape of CFS members
through shape optimisation algorithms is currently gaining sig-
nificant interest. The ultimate objective is to discover new and
innovative optimum cross-sections that can be manufactured and
practicably used onsite.

Nevertheless, research on shape optimisation of CFS members
has been solely restricted to columns with unconstrained (where
the algorithm is free to converge to any cross-sectional shapes) [3–
7] and constrained (where sections are able to be manufactured
and/or practicably assembled onsite) [8–12] problems. Shape op-
timisation of CFS beams has been seldom investigated and the
optimisation of CFS beams has been primarily performed so far by
algorithms that aimed at optimising the dimensions of a given

cross-section rather than optimising the cross-sectional shape it-
self, see [13–17] for instance. Shape optimisation of thin-walled
beams has been performed to a certain extent [18,19], but only to
maximise the second moments of area and minimise the cross-
sectional area.

This paper aims at shape optimising the cross-sections of un-
constrained (no manufacturing and assembly constraints) CFS
beams and beam-columns by minimising their cross-sectional
area for various combinations of axial compressive load and
bending moment. Unconstrained optimisation problems allow the
“absolute” optimised cross-sectional shape to be discovered. This
outcome provides a reference shape to be compared to when
manufacturing and assembly constraints are later introduced into
the algorithm. The present work is therefore an important step in
shape optimisation of practical CFS sections. An existing shape
optimisation algorithm [4,18] is used for this purpose.

The Direct Strength Method (DSM) [20] is used to calculate the
nominal axial compressive and bending capacities of the cross-
sections. Rules to automatically estimate the elastic bending local
and distortional buckling stresses to be used in the DSM are given
and verified against 64 cross-sections. The algorithm is applied to
beams that are either restrained (braced) or not against lateral
deflection and twist, and unrestrained (unbraced) beam-columns.
The optimised cross-sectional shapes are presented and the evo-
lution of the unrestrained shapes from pure axial compression to
pure bending is discussed.
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2. The shape-optimisation algorithm

In this study, the “self-shape” optimisation algorithm for CFS
members, for which the principles are published in [18] and its
applications to singly-symmetric cross-sections are presented in
[4], is used. Genetic Algorithm (GA) [21] is used as the search al-
gorithm. The GA is combined with the Augmented Lagrangian (AL)
method [22] to avoid ill-conditioned processes by ensuring finite
values of the penalty factors.

Initial cross-sections are drawn using self-avoiding random
walks. Cross-over and mutation operators are performed on a
design space [4,18]. The algorithm has the advantages of (i) being
verified against a known optimisation problem for which an
analytical solution exists [18] and (ii) allowing arbitrary cross-
sections to be initially created with no presumption of the opti-
mised shape. Examples of arbitrary drawn singly-symmetric and
open cross-sections in the initial population can be found in [4].

More information and full details of the algorithm are available
elsewhere [4, 18]. The calibration of the factors used in the AL
method is given in [18].

3. The optimisation problem

The “self-shape” optimisation algorithm is used herein to op-
timise simply-supported, free-to-warp, singly-symmetric and
open-section beams and beam-columns. The three fundamental
buckling modes, i.e. local, distortional and global, are incorporated
through the use of the DSM, as described in Section 4. The yield
stress fy of the steel is 450 MPa, the Young's modulus E is 200 GPa
and the shear modulus G is 80 GPa. The wall thickness t is taken as
1.2 mm. The member is subjected to a uniform bending moment
M* about its axis of symmetry (x-axis) and a compressive axial load
N*. The optimisation problem is illustrated in Fig. 1.

In reference to Fig. 1, the member length L is fixed throughout
this paper at 1.5 m. Five load cases (LC) are considered to in-
vestigate the optimum cross-sectional shapes of simply supported
beams, columns and beam-columns:

� LC1: Pure bending (N*¼0 and M*¼2.5 kN m) for a fully re-
strained beam, (i.e. Ley¼Lez¼0 m, where Ley and Lez are the ef-
fective buckling lengths for bending about the y-axis and for
twisting about the longitudinal z-axis, respectively).

� LC2: Same moment as LC1 but for an unrestrained beam (i.e. Ley
¼Lez¼L¼1.5 m).

� LC3: Pure axial compression (N*¼75 kN and M*¼0) for an un-
restrained column (i.e. Lex¼Ley¼Lez¼L¼1.5 m, where Lex is the
effective buckling length for bending about the axis of sym-
metry). This case has already been investigated in [12] and the
previously obtained results are used in this study.

� LC4: Combined actions for an unrestrained beam-column with
dominant bending. N* is taken as 1/3 of the axial compressive
load in LC3 and M* as 2/3 of the bending moment in LC2 (N*

¼25 kN and M*¼1.67 kN m).
� LC5: Combined actions for an unrestrained beam-column with

dominant axial compression. N* is taken as 2/3 of the axial
compressive load in LC3 andM* as 1/3 of the bending moment in
LC2 (N*¼50 kN and M*¼0.83 kN m).

As cold-rolled steel coil can usually be ordered in any width,
the approach is to mimic a CFS manufacturer who wants to opti-
mise the cross-sectional shape against a given design loading
combination. The unconstrained problem in the GA consists of
minimising the cross-sectional area As subject to an inequality
penalty function on N* and M*. The interaction equation described
in Clause 3.5 of the Australian cold-formed steel design

specification AS/NZS 4600 [23] is used as the penalty function,
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where ϕc and ϕb are capacity reduction factors, taken as 1.0 in this
study. Nc and Mb are the nominal member compressive and
bending capacities of the cross-section, respectively. The general
form of the fitness function f suitable for GA is then expressed as,
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where Aref is the reference area of similar value to the optimised
cross-sectional area. Aref is estimated herein with preliminary runs
and is taken as 190 mm2 for LC1, 292 mm2 for LC3 [12], and
260 mm2 for other cases. α is a penalty factor [21].

To avoid ill-conditioning problem, the AL constraint-handling
method developed in [22] for the GA is used. The actual form of
the fitness function f used in the algorithm then becomes,
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where γ is the penalty function coefficient, and m is the real
parameter associated with the penalty function. Initial values of
γ¼2.0 and μ¼0 found in [18] are used. Similar to [18], the AL
penalty increasing constant β and convergence rate ρ are set to
1.05 and 1.5, respectively.

Detailed parameters of the GA used in this paper are given in
[4,18]. In this study, 500 cross-sections are analysed per generation
and the algorithm converges in less than 60 generations (see
Section 5.1). Therefore, a maximum of 30,000 solutions in total are
analysed per run, this is similar to the 40,000 solutions analysed
per run in [7]. 10 runs are performed for each load case to verify
the robustness of the algorithm. The design space is set to
100 mm�100 mm. The cross-sections are composed of con-
secutive elements having nominal length of 4 mm. The prob-
abilities of cross-over and mutation operators are equal to 80% and
1%, respectively.

4. Nominal member compressive and moment capacities

4.1. The Direct Strength Method (DSM)

The DSM [20] allows designing CFS members for local, distor-
tional and global buckling simultaneously. The method presents
the same degree of complexity for any cross-sectional shapes and
therefore is well suited for shape optimisation problems. The DSM
as published in Clauses 7.2.1 and 7.2.2 of the AS/NZS 4600 [23] is
used in this study to calculate the nominal member compressive
and moment capacities Nc and Mb, respectively. Nc is expressed as,

( )= ( )N N N Nmin , , 4c ce cl cd

where Nce, Ncl and Ncd are the nominal member capacities in
compression for global, local and distortional buckling, respec-
tively. Similarly, Mb is expressed as,

Fig. 1. Optimisation problem.
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