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a b s t r a c t

An analytical solution is derived for dynamic response of long lined tunnels subjected to travelling loads.
For the derivation, the long lined tunnel is assumed to be infinitely long with a uniform cross-section
resting on a viscoelastic foundation. Fourier and Laplace transforms are utilized to simplify the governing
equation of the tunnel to an algebraic equation, so that the solution can be conveniently obtained in the
frequency domain. The convolution theorem is employed to convert the solution into the time domain.
Final solutions of tunnel responses investigated are deflection, velocity, acceleration, bending moment,
and shear force. The proposed solution is verified by providing comparisons between its results and those
from the Finite Element program ABAQUS. Further parametric analysis, such as the influence of wave
velocity and frequency on dynamic responses of the tunnel is presented with the analytical solution.
These relationships can be an effective tool for practitioners.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation on dynamic response of tunnels subjected to seis-
mic waves is a classical problem in anti-seismic research of under-
ground structures, and has significance in seismic design of tunnel
engineering. During the propagation of seismic wave, the time
when the wave arrives varies with different sites. It has been noted
that appropriate considerations should be given to travelling
waves (Hwang and Lysmer, 1981), especially for extended or
embedded structures with a large span or size such as tunnels,
because spatial variation of earthquake motion has dramatic
effects, which was already noted by a number of researchers
(Park et al., 2009; Yu et al., 2013b; Li and Song, 2015). Conse-
quently, the influence of the wave-passage effect on the safety of
tunnel structures should be quantitatively evaluated and highly
considered in seismic design.

Current research on tunnel response induced by travelling loads
is limited to numerical approaches, such as the Finite Difference
Method, Finite Element Method, and Boundary Element Method.
Several studies have been performed on this issue. Stamos and
Beskos (1995) proposed a frequency domain boundary element
method to investigate the dynamic response of three-dimensional

underground structures subjected to dynamic disturbances with a
harmonic or a transient time variation. Later, Stamos and Beskos
(1996) employed a special direct boundary element method in
the frequency domain for both the tunnel and the soil, assuming
the long lined tunnel to be infinitely long with a uniform cross-
section buried into an elastic or viscoelastic half-space to body
and surface harmonic seismic waves, which effectively reduces
the three-dimensional problem to a two-dimensional one.
Park et al. (2009) performed a series of pseudo-static three-
dimensional finite element analysis to evaluate the longitudinal
tunnel response under spatially varying ground motion. Yu et al.
(2013a, 2013b) proposed a multiscale method to simulate dynamic
responses of long tunnels subjected to uniform and non-uniform
seismic loadings, which involves the concurrent discretization of
the entire domain with both coarse- and fine-scale finite element
meshes. Li and Song (2015) developed a 3-D finite element model
in time domain to provide a feasible computational modeling tech-
nique for the longitudinal seismic response of tunnels under an
asynchronous earthquake wave input. In these analyses, one has
to consider both time and spatial increments in the numerical
approaches, and thus these methods are time-consuming and the
numerical accuracy is correlated to the integration algorithm.
Computational efficiency can be improved if analytical solutions
are available.

Clearly, analytical formulations are limited due to the assump-
tions that need to be made to reach the solution. In most cases, the
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design will require a numerical method that does not have the
shortcomings of the analytical solutions, as it can consider the con-
struction process, non-linear behavior, etc. Closed-form solutions
however are invaluable to obtain a better understanding of the
interplay that exists between dynamic loads, viscoelastic founda-
tion and tunnel structure, to identify what are the most critical
parameters for the problem, and to provide first estimates or even
a preliminary design. An added advantage is that they can be used
with very little cost to conduct sensitivity analysis and, most
importantly, to provide benchmark values to check the results of
the more complex numerical models.

St. John and Zahrah (1987) used Newmark’s approach to
develop closed-form solutions for free-field axial and curvature
strains due to compression, shear and Rayleigh waves. Based on
this, they used the pseudo-static approach, i.e. the free field
deformation approach, to estimate the strains and curvature of
the tunnel subjected to a harmonic motion propagating at an angle
to the tunnel axis. However, the free field approach ignores
the inertia forces and the interaction between the tunnel and the
surrounding ground, and thus may overestimate or underestimate
structure deformations depending on the rigidity of the structure
relative to the ground, which was already noted by a number of
researchers (Hashash et al., 2001; Bobet, 2003; Huo et al., 2006).

This paper focuses on the analytical solution for the dynamic
response of long lined tunnels subjected to travelling loads, and
taking into account both the inertia forces and the interaction
between the soil and the structure. Several assumptions are made
for the problem: the long lined tunnel is assumed to be infinitely
long with a uniform cross-section and to behave as linear elastic;
the surrounding soil medium is assumed to be isotropic and homo-
geneous and to behave as viscoelastic; the travelling loads are
assumed to be plane harmonic loads and propagate parallel to
tunnel axis. To obtain the analytical solution of the problem, the
Fourier transform is used to simplify the governing equation of
the tunnel in space domain, whereas the Laplace transform is
employed to reduce the equation in time domain. The governing
equation of the tunnel based on the integration transform, there-
fore, is changed to an algebraic equation so that the solution can
be conveniently given in the frequency domain. Finally, the convo-
lution theorem is employed to convert the solution into the time
domain. Various examples involving travelling loads and uniform
loads are presented to illustrate the solutions, and the results are
compared against those of the finite element method in order to
assess its accuracy. Parametric analyses are also performed to
investigate the influence of the wave-passage effect on dynamic
responses of the tunnel structure. These relationships can be
conveniently used to obtain the tunnel response and can be an
effective tool for practitioners.

2. Governing equation

Consider the idealised model drawn out for a practical engi-
neering problem of an infinitely long lined tunnel of uniform
cross-section resting on a viscoelastic foundation and subjected
to plane harmonic travelling loads along the longitudinal direction
of the tunnel. Fig. 1 depicts the coordinate system and significant
dimensions associated with an infinite long lined tunnel. The tun-
nel with constant stiffness EI and mass per unit length qA is con-
sidered, where E = Young’s modulus of elasticity; I = moment of
inertia of the tunnel cross section; q = density of the tunnel liner;
A = area of cross section of the tunnel. The tunnel is supported by
a viscoelastic foundation with constant spring stiffness K and vis-
cous damping C per unit length.

Define yðx; tÞ as the vertical deflection of the tunnel and Fðx; tÞ
as the plane harmonic travelling loads, in which the loads

propagate parallel to the tunnel axis (see the x-axis in Fig. 1) and
t is time. The wave-passage loads can be expressed as

Fðx; tÞ ¼ 0; ðx > VtÞ
P sin 2pX t � x

V

� �� �
; ðx 6 VtÞ

(
ð1Þ

where V , X and P = wave velocity, frequency and amplitude of the
loads, respectively.

The tunnel structure is assumed to behave linear elastically and
deform only due to the normal travelling loadings perpendicular to
the tunnel axis (deformations of the tunnel structure due to axial
forces are neglected). This is a common assumption in structural
mechanics. To simplify the derivation, the shear distortion of the
tunnel cross section is neglected here, and thus the tunnel
structure can be assumed to behave as an Euler-Bernoulli beam
(Yu and Yuan, 2014). The governing equation of the tunnel with
constant cross section resting on a viscoelastic foundation sub-
jected to travelling loads is given by

EI
@4yðx; tÞ

@x4
þ qA

@2yðx; tÞ
@t2

þ C
@yðx; tÞ

@t
þ Kyðx; tÞ ¼ Fðx; tÞ ð2Þ

Assume that the tunnel is at rest prior to the travelling loads
being applied. This means that the initial conditions of the tunnel
displacement and velocity are zero, i.e.

yðx; tÞjt¼0 ¼ 0;
@yðx; tÞ

@t
jt¼0 ¼ 0 ð3Þ

For an infinitely long lined tunnel, the boundary conditions are

lim
x!�1

@nyðx; tÞ
@xn

¼ 0 ðn ¼ 0;1;2;3Þ ð4Þ

Eqs. (1)–(4) constitute the complete mathematical description
of the problem. The dynamic response of the tunnel with respect
to the applied travelling loads can be obtained by solving these lin-
ear partial-differential equations.

3. Integral representation of the solution

Eq. (2) is a linear partial-differential equation. Integral transfor-
mation will enable its conversion into an algebra equation.

Define the Fourier transform and its inversion (Eringen and
Suhubi, 1975)

uðuÞ ¼ F½f ðxÞ� ¼ 1ffiffiffiffiffiffiffi
2p

p
Z þ1

�1
f ðxÞeiuxdx ð5Þ

f ðxÞ ¼ F�1½uðuÞ� ¼ 1ffiffiffiffiffiffiffi
2p

p
Z þ1

�1
uðuÞe�iuxdu ð6Þ

where F½�� and F�1½�� = Fourier transform and its inversion,
respectively.

Define the Laplace transform and its inversion (Morse and
Feshbach, 1953)

uðsÞ ¼ L½f ðtÞ� ¼
Z þ1

0
f ðtÞe�stdt; t > 0 ð7Þ

f ðtÞ ¼ L�1½uðsÞ� ¼ 1
2pi

Z cþi1

c�i1
uðsÞestds; t > 0; s > 0 ð8Þ

where L½�� and L�1½�� = Laplace transform and its inversion, respec-
tively; and c = an arbitrary real-valued number such that the path
integral in the complex-s plane for Eq. (8) lies in the right-hand side
of all poles of f ðsÞ.
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