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h i g h l i g h t s

• We consider possible group and individual differences in MDS representations.
• We develop a novel Bayesian implementation of the K-INDSCAL model.
• We apply the model to three psychological data sets.
• The results demonstrate the different sorts of group-level and individual-level differences.
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a b s t r a c t

Multidimensional scaling (MDS) models of mental representation assume stimuli are represented by
points in a low-dimensional space, such thatmore similar stimuli are represented by points closer to each
other.We consider possible individual differences inMDS representations, using the recently proposed K-
INDSCALmodel,which allows for both sub-groups of peoplewith different representations, and individual
differences in the attention people give to different stimulus dimensions. We develop a novel Bayesian
implementation of the K-INDSCAL model, and demonstrate in a simulation study it is capable of inferring
meaningful individual differences for the sorts of data sets typically available in psychology. We then
apply the model to three existing data sets, involving the taste of colas, images of cats, and colors of
different hues. Collectively, the results demonstrate the flexibility of the K-INDSCAL model in finding
both group- and individual-level differences, and highlight the need for Bayesian methods to make these
inferences.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multidimensional scaling (MDS) is a long-established and
widely-used statistical method for finding a spatial representation
of a set of objects, based on the similarities between those ob-
jects (Borg&Groenen, 2005; Cox&Cox, 1994; Schiffman, Reynolds,
Young, & Carroll, 1981). MDS represents objects as points in a
low-dimensional space, so that the similarity between each pair of
objects corresponds to the distance between the points represent-
ing them, with more similar objects being nearer each other. Used
as a statistical method, MDS has been applied throughout the nat-
ural and human sciences as a dimensionality-reduction method,
providing useful representations and visualizations of the relation-
ships between objects. In these sort of applications, the required
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similarities or proximities between each pair of objects are of-
ten found by automated methods, such as calculating the corre-
lations or distances between vectors of information representing
the objects. For example, the similarities of text documents can
be derived from counts of the number of keywords they have in
common, or the similarity between countries might be based on
(standardized) differences in properties like their landmass, GDP,
population, and so on.

The MDS model, however, has its origins in theories of human
mental representation (Shepard, 1974). MDS representations have
provided psychologically meaningful representations of many
stimulus domains, especially low-level perceptual domains such
as colors, phonemes, and simple perceptual forms (Shepard, 1980).
Shepard (1987) developed a formal theory of the key cognitive
process of stimulus generalization based on MDS representations,
and MDS models are widely used to represent stimuli in
cognitive models of identification, categorization, and learning
(Nosofsky, 1992). Used as a psychological model of stimulus
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representation, the similarities or proximities between each pair
of stimuli are usually based on human judgments of similarity.
These behavioral judgments can take the form of ratings on a
scale, or be derived from various decision-making tasks, such
as triadic comparison (Romney, Brewer, & Batchelder, 1993), or
identification or confusion tasks (Miller & Nicely, 1955).

When MDS is used as a statistical method of dimensionality
reduction, there is little conceptual scope to consider individual
differences, because the similarities are calculated from known
underlying quantitative descriptions. When MDS is used as a
psychological model of representations, however, the question
of individual differences becomes important. Different people
may represent the similarities between stimuli differently, and
a good model of human mental representation should account
for these differences. One well-established generalization of the
MDS model that include individual differences is the INDSCAL
model (Carroll & Chang, 1970; Takane, Young, & De Leeuw, 1977),
which still assumes a single spatial representation, but allows
individual differences by placing subject-specific weights on each
dimension. Thus, differences in judged similarities between stimuli
are explained by different people placing different emphasis on the
dimensions. Another approach to allowing individual differences
in MDS representations is provided by latent-mixture modeling
(Lee, 2008; Winsberg & De Soete, 1993), in which there are
multiple spatial representations, each corresponding to a sub-
group of subjects. Recently, Bocci and Vichi (2011) proposed a
generalization of the MDS called K-INDSCAL, which effectively
combines the INDSCAL and latent-mixture models of individual
differences. K-INDSCAL is a K latent-class mixture of INDSCAL, and
so includes the possibility of different spatial representations for
groups of subjects, as well as dimension weights for individual
subjects within each group.

While the K-INDSCAL model is an important theoretical devel-
opment, the implementation reported by Bocci and Vichi (2011)
uses classical estimation methods based on least-squares opti-
mization. For a model with the complexity and richness of K-
INDSCAL, this is potentially limiting, because it does not allow for
themeasurement of uncertainty in inferences. Given themodel al-
lows both group-level and individual-level differences in stimulus
representation, most data will be at least partly consistent with
different representational possibilities, and it is important to un-
derstand what can and cannot be inferred about individual differ-
ences. The ability to handle uncertainty in a complete and coherent
way is the cornerstone of the Bayesian approach to statistical in-
ference (Jaynes, 2003; Lindley, 1972). There is a modest and grow-
ing literature on Bayesian methods for MDS modeling (Bakker &
Poole, 2013; Lee, 2008; Oh & Raftery, 2001; Okada & Mayekawa,
2011; Okada & Shigemasu, 2010; Park, DeSarbo, & Liechty, 2008),
but it has yet to be applied to the K-INDSCAL model. There is also
a literature on using Bayesian methods to understand individual
differences in cognitive processes related to similarity judgment,
including category learning (Bartlema, Lee, Wetzels, & Vanpaemel,
2014),memory (Dennis, Lee, &Kinnell, 2008), anddecision-making
(Lee, 2015; Scheibehenne, Rieskamp, & Wagenmakers, 2013; van
Ravenzwaaij, Dutilh, & Wagenmakers, 2011).

Accordingly, the goal of this paper is to develop, evaluate, and
apply a Bayesian approach for the K-INDSCALmodel, usingmodern
computationalMarkov chainMonte Carlo (MCMC)methods. In the
next section, the Bayesian K-INDSCAL model is formally defined,
and we develop a two-step post-processing method that can be
applied to MCMC samples taken from its posterior to deal with
indeterminacy issues. We report the results of a small simulation
study using artificially generated data to check that inferences are
possible from the sorts of data typically available in psychology.
We then present three applications of the proposed Bayesian
method using previously considered psychological data. The three

applications involve the taste of colas, images of cats, and colors of
different hues, and collectively highlight the flexibility of themodel
to consider both group-level and individual-level differences in
representation. Finally, we discuss the current contributions and
future directions for the modeling approach.

2. Model and inference method

2.1. A Bayesian formulation of the K-INDSCAL model

Our proposed Bayesian method is an extension of previous
work by Oh and Raftery (2001). These authors developed a
Bayesian approach for applying a standard MDS model to data.
We develop a Bayesian approach for the K-INDSCAL extension of
the standard MDS model. For this model, the data take the form
of three-way observed dissimilarities between pairs of I stimuli
judged by H subjects. We denote the observed proximity matrix
of subject h as Yh (h = 1, . . . ,H), where the (i, i′)-th element,
yii′h, represents the perceived dissimilarity between stimuli i and
i′ judged by the subject. The model assumes that the observed
dissimilarity is the sum of the true distance and measurement
error:

yii′h ∼ N[0,∞)(dii′h, σ 2). (1)

In this equation, N[0,∞)(·) represents truncated normal distribu-
tion, which is used because the observed dissimilarity does not
take negative values (Oh & Raftery, 2001), dii′h represents the dis-
tance between stimuli i and i′ perceived by subject h who belongs
to class k (h = 1, . . . ,H, k = 1, . . . , K , K < H). This member-
ship is represented by an indicator variable uh = k. The distance is
given as the weighted Euclidean distance

dii′h =

 J
j=1

whj(xijk − xi′jk)2. (2)

The spatial representation matrix Xk = {xijk} (k = 1, . . . , K),
which represents the coordinates of I stimuli in a J-dimensional
space, is shared by all the subjects who belong to the same
class k. The weight that subject h gives to dimension j, W =

{whj}, however, differs from one subject to another, representing
individual differences within the class. The latent parameters Xk,
W and u = {uh} are to be inferred from observed data using the
model.

As required by the Bayesian approach, we place prior distribu-
tions over all of the parameters. For the prior on Xk we use the nor-
mal distribution

xijk ∼ N(0, τ 2
j ). (3)

For the prior on the variance parameters we use the standard
assumption of an inverse gamma distribution,

σ 2
∼ IG(ασ , βσ ), (4)

τ 2
j ∼ IG(ατ , βτ ). (5)

The hyper-parameter values, {ασ , βσ , ατ , and βτ } can be set to
small values to represent little prior information. In all of the
modeling we report, they were set to 0.001.

The individual weights W = {whj} are assumed to lie in the
J-simplex for each subject, so that

whj ≥ 0,
J

j=1

whj = J. (6)

For example, when J = 2, if the first subject considers the first
dimension to be slightly more important, this may correspond to a
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