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h i g h l i g h t s

• Reinforcement learning models suffer from the difficulty of parameter estimation.
• Empirical priors improve predictive accuracy, reliability, identifiability, and detection of individual differences.
• These priors are fairly robust across model variants.
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a b s t r a c t

Computationalmodels of reinforcement learning have played an important role in understanding learning
and decision making behavior, as well as the neural mechanisms underlying these behaviors. However,
fitting the parameters of these models can be challenging: the parameters are not identifiable, estimates
are unreliable, and the fitted models may not have good predictive validity. Prior distributions on the
parameters can help regularize estimates and to some extent deal with these challenges, but picking a
good prior is itself challenging. This paper presents empirical priors for reinforcement learning models,
showing that priors estimated from a relatively large dataset are more identifiable, more reliable, and
have better predictive validity compared to model-fitting with uniform priors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reinforcement learning (RL) models formalize the process
through which stimulus-reward predictions are acquired and
used to guide choice behavior (Sutton & Barto, 1998). These
models have become important tools for developing amechanistic
understanding of RL in the brain, as well as its breakdown
in psychiatric and neurological disorders (Maia & Frank, 2011).
The successful application of RL models hinges on accurately
estimating parameters, perform model comparison, and predict
new data. Because these models are non-linear functions of their
parameters, it is necessary to rely on optimization or Monte Carlo
sampling (Daw, 2011). These methods are prone to errors which
are computationally expensive to correct (e.g., one could run
the optimizer with more initializations, or generate more Monte
Carlo samples). There are also fundamental problems that more
computation cannot address, such as estimation error due to small
sample sizes and poor parameter identifiability.

When sample size is small and the data are noisy relative to the
complexity of the model being fit, parameters can be ‘‘overfit’’—
i.e., the estimated parameters do not generalize to new datasets.
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Overfitting can be controlled by constraining the complexity of
the model, or by placing prior probabilities on the parameters
that control the ‘‘effective’’ complexity. Intuitively, if there are two
parameters, and one parameter is constrained by the prior to take
on a fixed value, then the model effectively has one parameter.

Priors can also aid identifiability. A model is identifiable if dif-
ferent parameter settings cannot produce equivalent likelihoods
(Casella & Berger, 2002). Identifiability is not especially important
if one’s only goal is prediction or model comparison. However, if
one wishes to interpret the parameter estimates (e.g., make an
inference that a particular parameter lies within some range of
values) or correlate them with other measurements (e.g., individ-
ual differences analyses), then identifiability is crucial. RL models
suffer fromnon-identifiability; for example, equivalent likelihoods
can be achieved by different combinations of learning rate and
inverse temperature. One symptom of this non-identifiability is
correlation between parameter estimates across participants—
a commonly observed but poorly appreciated phenomenon.1

1 Fully Bayesian approaches,which estimate the posterior distribution (e.g., using
Monte Carlo simulation) rather than a point estimate, can reveal non-identifiability
by inspecting correlations between parameters in the joint posterior. The Laplace
approximation, which we use below, produces a local Gaussian approximation of
this joint distribution around the posterior mode.
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Different participants may have different fitted parameter values,
but all these values may lie along an iso-likelihood contour in the
parameter space. When changing one parameter can compensate
for changes in another parameter so as to remain on the contour,
then fitted parameter values will be correlated.2

The approach advocated in this paper is to use ‘‘empirical pri-
ors’’ estimated from a separate dataset. The basic idea is to use the
distribution of parameter estimates to construct a parameterized
prior that is transferable to other datasets. Below, we describe the
steps involved, along with a quantitative evaluation. We ask four
questions about empirical priors:
1. Do they improve predictive accuracy?
2. Do they improve reliability of parameter estimates?
3. Do they improve parameter identifiability?
4. Do they improve the measurement of individual differences?
To foreshadow our results, the answer to all four question is yes.

2. Methods

2.1. Participants

Dataset 1 (D1 hereafter) collects together 166 participants
across 4 experiments reported in Gershman (2015). In that
paper, model comparison suggested that participants behaved
essentially the same across experiments, which licenses collapsing
the experiments together. Dataset 2 (D2 hereafter) consists of new
data from40 participants doing the same task as the participants in
D1 but with different reward probabilities (see below). In addition,
we collected predictions of reward probability for the chosen
option on every trial, using a continuous rating scale. Participants
did both tasks on the web, via Amazon’s Mechanical Turk service
(they were thus drawn from the same population; participants
were not excluded from doing both experiments). The experiment
was approved by the Harvard Institutional Review Board and
participants were paid for their participation.

2.2. Procedure

On each trial, participants were shown two colored buttons
and told to choose the button that they believed would deliver
the most reward. After clicking a button, participants received a
binary (0, 1) reward with some probability. The probability for
each button was fixed throughout a block of 25 trials. In D1, there
were two types of blocks, presented in a randomized order: low
reward rate blocks andhigh reward rate blocks. On low reward rate
blocks, both options delivered reward with probabilities less than
0.5. On high reward rate blocks, both options delivered reward
with probabilities greater than 0.5. These probabilities (which
were never shown to participants) differed across experiments
(see Gershman, 2015, for more details).

D2 followed the same procedure, but with different reward
probabilities. Specifically, on each block one of the options always
delivered reward with a probability less than 0.5, and the other
option always delivered reward with a probability greater than
0.5. The 4 reward probability pairs were (0.4, 0.6), (0.3, 0.7), (0.2,
0.8) and (0.1, 0.9). Each reward probability pair was experienced
for 25 trials (thus a total of 100 trials per subject). Condition
order was randomized across participants. For the purposes of
this paper, the differences between these conditions are not
particularly important; performance depended on the difference in
reward probability between the twooptions, but themodel fits and
parameter estimates did not differ appreciably across experiments
or conditions.

2 More complex identifiability issues, such as contours that do not change
monotonically as a function of two parameters, will not be revealed by correlations.
Furthermore, correlations can also reflect meaningful individual differences. In
general, parameter correlations must be interpreted with caution.

2.3. Models

We fit 4 different models to participants’ choice data:

• M1: Single learning rate. After choosing option ct ∈ {1, 2}
on trial t and observing reward rt ∈ {0, 1}, the value (reward
estimate) of the option is updated according to:

Vt+1(ct) = Vt(ct) + ηδt , (1)

where η ∈ [0, 1] is the learning rate and δt = rt − Vt(ct) is
the prediction error. The values were initialized to 0. This is a
standard Q-learning model (Daw, O’Doherty, Dayan, Seymour,
&Dolan, 2006; Sutton&Barto, 1998)with a single fixed learning
rate. For this and subsequent models, all values are initialized
to zero. A logistic sigmoid (softmax) transformation is used to
convert values to choice probabilities:

P(ct = 1) =
1

1 + e−β[Vt (1)−Vt (2)]
, (2)

where β is an ‘‘inverse temperature’’ parameter that governs
the exploration–exploitation trade-off.

• M2: Dual learning rates. This model is identical to M1, except
that it uses two different learning rates, η+ for positive pre-
diction errors (δt > 0) and η− for negative prediction errors
(δt < 0). Thismodel has been explored by several authors (Daw,
Kakade, & Dayan, 2002; Frank, Doll, Oas-Terpstra, & Moreno,
2009; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Gershman, 2015; Niv, Edlund, Dayan, & O’Doherty, 2012).

• M3: Single learning rate + stickiness. This model is identical
to M1, with the addition of a ‘‘stickiness’’ parameter ω that bi-
ases repetition of choices independent of reward history:

P(ct = 1) =
1

1 + e−β[V ′
t (1)−V ′

t (2)]
, (3)

V ′

t (c) =


Vt(c) + ω if ct−1 = c
Vt(c) if ct−1 ≠ c. (4)

In words, the stickiness parameter adds a bonus onto the op-
tion value of themost recently chosen option. A number of stud-
ies have used this or similar parameterizations (e.g., Christakou
et al., 2013; Gershman, Pesaran, & Daw, 2009).

• M4: Dual learning rates + stickiness. This model is a combi-
nation of models M2 and M3, with separate learning rates for
positive and negative prediction errors, as well as a stickiness
parameter.

2.4. Parameter estimation and model comparison

Parameters for model m and subject s (denoted θms) were
estimated by optimizing themaximum a posteriori (MAP) objective
function—i.e., finding the posterior mode:

θ̂ms = argmax
θms

p(Ds|θms,m)p(θms|m, φm), (5)

where p(Ds|θms,m) is the likelihood of data Ds for subject s
conditional on parameters θms and model m, and p(θms|m, φm)
is the prior probability of θms conditional on model m and
hyperparameters φm. We assume each parameter is bounded and
use constrained optimization to find the MAP estimates.3

To compare models, we assumed that each model occurs with
some frequency in the population (i.e., the assignment of models

3 Software for performing optimization and other analyses reported in this paper
is available at https://github.com/sjgershm/mfit. Reinforcement learning models
and data are available at https://github.com/sjgershm/RL-models.
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