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a b s t r a c t

Because public health agencies usually monitor health outcomes over time for surveillance, program
evaluation, and policy decisions, a correct health outcome trend analysis is vital. If the analysis is done
incorrectly and/or results are misinterpreted, a faulty trend analysis could jeopardize key aspects of
public health initiatives such as program planning, implementations, policy development, and clinical
decision making. It is essential then that accurate health outcome trend analysis be implemented in any
data-driven decision-making process. Unfortunately, there continues to be common statistical mistakes
in prevalence trend analysis. In this article, using recently published results from the Pediatric Nutrition
Surveillance System, we will show the effect that an incorrect trend analysis and subsequent interpre-
tation of results can have. We will also propose more appropriate statistical processes, such as the log-
binomial model, for these situations.

� 2016 Elsevier Inc. All rights reserved.

Introduction

In public health studies, monitoring prevalence of a behavior or
disease from an initial time to later time points, one can consider
two primary goals of interest

1. Estimation of the true prevalence ratio for a binary heath
outcome (i.e., obese or not) at the desired time points.

2. Measurement of the rate of change in prevalence ratio from the
initial time point to subsequent time points and determination
if that trend is statistically significant.

There has been much discussion about the appropriate statistics
to use for the first goal. Both odds ratios and risk ratios are widely
used as estimates of the true prevalence ratio in the population
when outcomes are binary. Although the odds ratio is recom-
mended in certain situations such as case-control studies, it has
potential problems in other contexts. The odds ratio can only be
considered as an approximation to the prevalence ratio when
health outcomes are relatively rare (less than 10%) [1]. For health
outcomes that are relatively common (>10% of the population),
such as obesity and smoking, medical and public health researchers

have repeatedly been advised to use a risk ratio rather than an odds
ratio [2e4]. Odds ratios are systematically more extreme than their
corresponding prevalence ratios, leading to a tendency to over-
estimate the true effect in the population [5]. Additionally, the
interpretation of the odds ratio is a difficult concept for many,
whereas the risk ratio can be easily interpreted as a ratio of two
prevalence estimates. In spite of this, the odds ratio continues to be
a popular estimator of prevalence ratio, even when the prevalence
is high. This misuse of the odds ratio can be seen in many published
results, some as recent as 2015 [2,5e8]. It is for these reasons that
the risk ratio is generally recommended for cross-sectional, longi-
tudinal, and trend analyses, particularly for common outcomes.
These are the types of studies that our article intended to address.

Although much has been published about estimation of the
prevalence ratio, there has been less attention paid to the modeling
techniques used to estimate and test the trend in prevalence. Just as
the choice of risk ratio versus odds ratio can make an appreciable
difference in the estimation of the true prevalence ratios in the
population, the choice of an incorrect model can make a substantial
difference in the estimation of the trend and its significance. Lo-
gistic regression models estimate changes in odds ratios not
changes in prevalence ratios. If the prevalence in the population is
large enough such that the odds ratio is not a good estimate of
changes in prevalence, for the same reasons, the logistic regression
model should not be used. Instead, the log-binomial model [9] is a
more appropriate model for estimating prevalence ratios. It uses
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risk ratio estimates for testing trends in prevalence rate. Some re-
searchers continue to use logistic regression models, even when
their goal is to estimate (and test) trends in prevalence in a common
outcome. There are many published studies that use logistic
regression to test for trends of high prevalence conditions such as
obesity and diabetes [10e13]. We will demonstrate how the use of
the more appropriate log-binomial model can change the conclu-
sions for prevalence trend studies using published obesity data
from May et al. [14].

This article is structured as follows: In section 2, we discuss the
methodological differences between the logistic regression model,
which measures changes in odds ratios and the log-binomial
model, which measures changes in risk ratios. In section 3, we
further compare and contrast odds ratios and risk ratios. In section
4, we reanalyze data from the Pediatric Nutrition Surveillance
System using log-binomial models. In section 5, we make recom-
mendations for future prevalence analysis.

Section 2

Traditionally, the significance of a potential relationship be-
tween a single dichotomous dependent variable and a collection of
k independent variables has been tested and measured using lo-
gistic regression. The logistic regression model is defined as:

log
�

p
1� p

�
¼ b0 þ

Xk
j¼1

bjXj

This model has certain advantages. The foremost is that when
solving for p, for a given set of covariates, the solution is guaranteed
to be sensibly bounded between 0 and 1. In this model, beta co-
efficients are in terms of odds ratios rather than prevalence ratios.

Another model that has been gaining support [4,15e17] for a
wide variety of analyses, including trend analysis, is the log-
binomial model. It is defined as:

logðpÞ ¼ b0 þ
Xk
j¼1

bjXj

The log-binomial model more directly estimates p, the param-
eter of interest. It was discussed and described as early as 1986, by
Wacholder, as an alternative to logistic regression [9], but this
model has been underused because it can be computationally
difficult to fit. However, nowadays, with increased computational
power and newalgorithms and software, this is less of an issue. This
model can now be fit using simple syntax in either SAS [15] or R
[18], and a variety of alternatives has been offered to handle the
situations where parameter estimates for the model fail to
converge. These include computational improvements to the log-
binomial estimation process [19] as well alternative modeling
techniques such as the Cox proportional hazard model [20,21] and
the Robust Poisson model [22]. Because of this, these alternatives
are increasingly recommended over the logistic regression model
[4,15,17e22].

Another major advantage of the log-binomial model over the
logistic regression model is that the standard errors of co-
efficients tend to be smaller. This has been shown in a number of
studies [4,16,17]. We can gain some insight into this by comparing
the unadjusted odds ratios to the unadjusted risk ratios for the
special case of a single binary independent variable. In this case,
the model estimates become equivalent to using the estimation
formulas from a 2 by 2 table. The formulas for the standard error
are:
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Basic algebra for this simple case, assuming all entries are
nonzero, shows that the standard error of the risk ratio will always
be smaller than that of the odds ratio. These have important im-
plications. Although it is true that, for low prevalence, the odds ratio
and risk ratio will be quite similar, we can still get a more precise
estimate of this shared value by using the risk ratio or, equivalently,
the log-binomial model without covariates.

Section 3

We can get a better sense of the differences in standard errors, as
well as the discrepancies between risk ratio and odds ratio by
considering a range of possible prevalence rates. Table 1 shows
what happens to odds ratios and risk ratios as the prevalence in-
creases over a time span of 11 time points. Table 1 is intended to
simulate generic trend analyses, similar to that conducted by May
et al., where a risk ratio is recommended over an odds ratio. We
selected evenly spaced prevalence rates ranging from 2.5% to 35% to
illustrate differences between odds ratios and risk ratios for both
small and large prevalence rates. In this case, we are generating
odds ratios and risk ratios by comparing prevalence rates at the
time point of interest to those at time point one. The sample size of
56,800 is taken from the Pediatric Nutrition Surveillance System as
the sample size of Maryland, amedium-sized state. At the bottom of
the table, we also include standard error estimates for the risk ratio
and odds ratio at both the original sample size and one fourth of the
original sample size. This reduced sample size would be represen-
tative of a smaller state such as Hawaii.

The table clearly shows that as the prevalence increases the
difference between the odds ratio and risk ratio also increases. This
ever-increasing divergence is further shown by comparing the two
lines in Figure 1.

The divergence between odds ratios and risk ratios, noted above,
is a widely cited phenomenon. Unfortunately, much less attention
has been paid to the difference in standard errors, although stan-
dard errors are a critical component of statistical inference. An
incorrect estimate of standard error can lead to incorrect con-
clusionsdboth type I and type II errors in hypothesis tests and
confidence intervals that are either too wide or too narrow. In
Table 1, for small prevalence rates, the standard errors are quite
different, with the risk ratio having a smaller standard error than
the odds ratio. However, this difference diminishes as the preva-
lence rate increases. These differences are further illustrated in
Figure 2. It is important to note that it is within the generally rec-
ommended range of prevalence values (<10%) for estimating the
prevalence ratio with the odds ratio that we are seeing the largest
difference in standard errors.

Another important observation comes from the lower part of
Table 1. The differences between odds ratios and risk ratios do not
depend on the sample size but only on the prevalence rates. As we
can see from the table; however, the differences between standard
error estimates do depend on sample sizes. Comparing time point 1
to time point 2 for the original sample size, we see that the standard
error of the odds ratio is 0.0461, whereas the standard error of the
risk ratio is 0.0305.Whenwe look at the same prevalence rateswith
a reduced sample size, the standard errors increase so that the
standard error of the odds ratio is 0.0923 and that of the risk ratio is
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