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Abstract 

Stochastic differential equations of zero-dimensional reactor kinetics have been derived assuming that the discrete branching process and 
its continuous analog have moments of distribution converging up to the second order inclusively. The notion of weak external neutron source 
has been defined more accurately. Cohn’s model has been comparatively analyzed against the reactivity noise model introduced by analogy 
with the Schottky effect. 
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Derivation of stochastic differential equations of 
zero-dimensional reactor kinetics 

In [1] , Eq. (8 

′ ) was obtained for the characteristic func- 
tion F (t, z 1 , z 2 ) of the distribution P α1 , α2 (t ) for the number 
α1 of the T 1 -type particles and for the number α2 of the T 2 - 
type particles at the time t , if these two types did not exist 
at t = 0. It is obvious that, apart from the exact solution F of 
Eq. (8 

′ ), it is also possible to obtain the approximate value 
˜ F - by representing the coefficients at F, ∂F 

∂ z 1 
, ∂F 

∂ z 2 
in the equa- 

tion by respective approximate expressions. For example, it is 
possible to expand these coefficients in a Taylor series in the 
powers of z 1 и z 2 and, while leaving the needed number of 
summands in these series (say, n ), to obtain approximate val- 
ues ˜ F n for F (t, z 1 , z 2 ) . The index n , as we shall see at a later 
stage, does not only denote the degree of approximation, but 
also defines the maximal order for the coincident initial mo- 
ments of the distribution P α1 , α2 (t ) which are obtained from the 
exact solution F and the approximate solution 

˜ F n of Eq. (8 

′ ). 
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One can easily make sure from Eq. (8 

′ ) that, e.g. for 
˜ F 2 (t, z 1 , z 2 ) , Eq. (1) is true 

∂ ˜ F 2 

∂t 
+ 

∂ ˜ F 2 

∂ z 1 

{ 

j z 1 z 2 
kβ

L 

[ 

1 − ν(ν − 1) 

ν
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] 
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kβ
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2L 
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− jz 2 2 
kβ
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+ λ
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(

j z 1 z 2 − z 1 + z 2 − 1 

2 

jz 2 1 −
1 

2 

jz 2 2 

)

+ S 

˜ F 2 

(
1 

2 

z 2 1 − j z 1 

)
= 0 (1) 

which has the boundary conditions 

˜ F 2 (0, z 1 , z 2 ) = 

˜ F 2 (t, 0, 0) = 1 (2) 

similar to conditions ( 9 ) in [1] . 
The obtained equation for ˜ F 2 (t, z 1 , z 2 ) is the equation in 

first-order partial derivatives with coefficients containing pow- 
ers of z 1 and z 2 that do not exceed 2. Therefore, according 
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to [2] , this equation, along with conditions ( 2 ), is the equa- 
tion for the characteristic function of the two-dimensional dif- 
fusion process y(t ) = { y 1 (t ) , y 2 (t ) } , the paths for which are 
described by stochastic differential equations ( 3 ) 

d y 1 
dt 

= 

k(1 − β) − 1 

L 

y 1 + λy 2 + S + g 11 (y) ξ1 (t ) + g 12 (y) ξ2 (t ) 

d y 2 
dt 

= 

kβ

L 

y 1 − λy 2 + g 21 (y) ξ1 (t ) + g 22 (y) ξ2 (t ) (3) 

where ξ 1 (t) , ξ 2 (t) are standard Gaussian independent white 
noises, and g ij are the solutions of the matrix equation 

G G 

T = B , (4) 

where B is the matrix with the entries 

b 11 = S + 

1 

L 
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y 1 + λy 2 . 

It is possible to write a generalization for m groups of 
delayed neutrons for the vector continuous random process 
y(t ) = { y 1 (t ) , ..., y m+1 (t ) } : 

d y 1 
dt 

= 

k(1 − β) − 1 

L 

y 1 + 

m+1 ∑ 

i=2 

λi y i + S + 

m+1 ∑ 

i=1 

g 1 i (y) ξi (t ) , 

d y i 
dt 

= 

k βi 

L 

y i − λi y i + 

m+1 ∑ 

j=1 

g i j (y) ξ j (t ) , i = 2, m + 1 (3a) 

where g ij are the entries of matrix Eq. (4) with the entries of 
the ( m + 1) th -order matrix B of the following form: 
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We shall use a ratio for the i th-order initial moments 
M 

(n) 

i−l,l (t ) of the distribution defined by the standard function 

˜ F n (t, z 1 , z 2 ) [3] : 

M 
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(5) 

It is clear that, with n → ∞ , the moments M 

(n) 

i−l,l (t ) be- 
come the moments of the exact distribution defined by the 
characteristic function F (t, z 1 , z 2 ) . 

By writing from (8 

′ ) the equation for ˜ F n (t, z 1 , z 2 ) , differen- 
tiating it with respect to z 1 , z 2 as many times as needed, and 

equating the coefficients to zero, with the summands having 

equal powers z 1 and z 2 , one can obtain the system of equa- 
tions for the moments M 

(n) 

i−l,l (t ) : 
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where χ = max ( j − n, l ) , u = min (n, j) , u 

′ = min (n, l ) , 
q i, j are the initial moments for the distribution q α1 , α2 of the 
numbers α1 (prompt neutrons) and α2 (precursors of delayed 

neutrons generated in one fission event). 
It can be seen from system of Eqs. (6) that: (1) the sys- 

tem is linear; (2) all moments M 

(n) 
gg (t ) in its right-hand side 

have an order of not higher than j , that is, it is closed; and 

(3) the moments M 

(n) 

j−l,l (t ) obtained from the approximate so- 

lution 

˜ F 2 (t, z 1 , z 2 ) and the moments M j−l,l (t ) found by the 
exact solution F (t, z 1 , z 2 ) of Eq. (8 

′ ), are described for j ≤
n by one and the same system of equation. Therefore, the 
moments of the distribution P α1 , α2 (t ) obtained from the exact 
solution F (t, z 1 , z 2 ) and the approximate solution 

˜ F 2 (t, z 1 , z 2 ) 
of Eq. (8 

′ ) agree up to the order n inclusively. 
One can judge about the quality (accuracy) of the selected 

approximation from the number n of coincident moments. 
Besides, the system of equations ( 6 ) can be always used to 

estimate the error when finding moments of a higher order 
based on an approximate model. Therefore, the continuous 
analog y(t ) = { y 1 (t ) , y 2 (t ) } of the discrete random process 
α(t ) = { α1 (t ) , α2 (t ) } obtained at n = 2, has probabilistic char- 
acteristics that agree with the same characteristics of the dis- 
crete process to within the second-order moments inclusively. 
Therefore, the diffusion process y ( t ), the paths for which are 
described by system of equations ( 3 ), has a mathematical ex- 
pectation (mean) and the second moments (dispersion, cor- 
relation functions) that agree exactly with the mathematical 
expectation and the second moments of the discrete numbers 
of prompt neutrons and precursors. 
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