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Perhaps surprisingly, it is possible to predict how long an algorithm will take to run
on a previously unseen input, using machine learning techniques to build a model of
the algorithm’s runtime as a function of problem-specific instance features. Such models
have important applications to algorithm analysis, portfolio-based algorithm selection,
and the automatic configuration of parameterized algorithms. Over the past decade,
a wide variety of techniques have been studied for building such models. Here, we
describe extensions and improvements of existing models, new families of models, and—
perhaps most importantly—a much more thorough treatment of algorithm parameters as
model inputs. We also comprehensively describe new and existing features for predicting
algorithm runtime for propositional satisfiability (SAT), travelling salesperson (TSP) and
mixed integer programming (MIP) problems. We evaluate these innovations through the
largest empirical analysis of its kind, comparing to a wide range of runtime modelling
techniques from the literature. Our experiments consider 11 algorithms and 35 instance
distributions; they also span a very wide range of SAT, MIP, and TSP instances, with the
least structured having been generated uniformly at random and the most structured
having emerged from real industrial applications. Overall, we demonstrate that our new
models yield substantially better runtime predictions than previous approaches in terms
of their generalization to new problem instances, to new algorithms from a parameterized
space, and to both simultaneously.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

NP-complete problems are ubiquitous in AI. Luckily, while these problems may be hard to solve on worst-case inputs, it
is often feasible to solve even large problem instances that arise in practice. Less luckily, state-of-the-art algorithms often
exhibit extreme runtime variation across instances from realistic distributions, even when problem size is held constant,
and conversely the same instance can take dramatically different amounts of time to solve depending on the algorithm
used [31]. There is little theoretical understanding of what causes this variation. Over the past decade, a considerable body
of work has shown how to use supervised machine learning methods to build regression models that provide approximate
answers to this question based on given algorithm performance data; we survey this work in Section 2. In this article, we
refer to such models as empirical performance models (EPMs).1 These models are useful in a variety of practical contexts:
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1 In work aiming to gain insights into instance hardness beyond the worst case, we have used the term empirical hardness model [75,76,73]. Similar
regression models can also be used to predict objectives other than runtime; examples include an algorithm’s success probability [45,97], the solution
quality an optimization algorithm achieves in a fixed time [96,20,56], approximation ratio of greedy local search [82], or the SAT competition scoring
function [119]. We reflect this broadened scope by using the term EPMs, which we understand as an umbrella that includes EHMs.
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• Algorithm selection. This classic problem of selecting the best from a given set of algorithms on a per-instance ba-
sis [95,104] has been successfully addressed by using EPMs to predict the performance of all candidate algorithms and
selecting the one predicted to perform best [18,79,26,45,97,119,70].

• Parameter tuning and algorithm configuration. EPMs are useful for these problems in at least two ways. First, they
can model the performance of a parameterized algorithm dependent on the settings of its parameters; in a sequential
model-based optimization process, one alternates between learning an EPM and using it to identify promising settings
to evaluate next [65,7,59,55,56]. Second, EPMs can model algorithm performance dependent on both problem instance
features and algorithm parameter settings; such models can then be used to select parameter settings with good pre-
dicted performance on a per-instance basis [50].

• Generating hard benchmarks. An EPM for one or more algorithms can be used to set the parameters of existing
benchmark generators in order to create instances that are hard for the algorithms in question [74,76].

• Gaining insights into instance hardness and algorithm performance. EPMs can be used to assess which instance fea-
tures and algorithm parameter values most impact empirical performance. Some models support such assessments
directly [96,82]. For other models, generic feature selection methods, such as forward selection, can be used to identify
a small number of key model inputs (often fewer than five) that explain algorithm performance almost as well as the
whole set of inputs [76,57].

While these applications motivate our work, in the following, we will not discuss them in detail; instead, we focus on the
models themselves. The idea of modelling algorithm runtime is no longer new; however, we have made substantial recent
progress in making runtime prediction methods more general, scalable and accurate. After a review of past work (Section 2)
and of the runtime prediction methods used by this work (Section 3), we describe four new contributions.

1. We describe new, more sophisticated modelling techniques (based on random forests and approximate Gaussian pro-
cesses) and methods for modelling runtime variation arising from the settings of a large number of (both categorical
and continuous) algorithm parameters (Section 4).

2. We introduce new instance features for propositional satisfiability (SAT), travelling salesperson (TSP) and mixed integer
programming (MIP) problems—in particular, novel probing features and timing features—yielding comprehensive sets of
138, 121, and 64 features for SAT, MIP, and TSP, respectively (Section 5).

3. To assess the impact of these advances and to determine the current state of the art, we performed what we believe
is the most comprehensive evaluation of runtime prediction methods to date. Specifically, we evaluated all methods of
which we are aware on performance data for 11 algorithms and 35 instance distributions spanning SAT, TSP and MIP and
considering three different problems: predicting runtime on novel instances (Section 6), novel parameter configurations
(Section 7), and both novel instances and configurations (Section 8).

4. Techniques from the statistical literature on survival analysis offer ways to better handle data from runs that were
terminated prematurely. While these techniques were not used in most previous work—leading us to omit them from
the comparison above—we show how to leverage them to achieve further improvements to our best-performing model,
random forests (Section 9).2

2. An overview of related work

Because the problems have been considered by substantially different communities, we separately consider related work
on predicting the runtime of parameterless and parameterized algorithms, and applications of these predictions to gain
insights into instance hardness and algorithm parameters.

2.1. Related work on predicting runtime of parameterless algorithms

The use of statistical regression methods for runtime prediction has its roots in a range of different communities and
dates back at least to the mid-1990s. In the parallel computing literature, Brewer used linear regression models to predict
the runtime of different implementations of portable, high-level libraries for multiprocessors, aiming to automatically select
the best implementation on a novel architecture [17,18]. In the AI planning literature, Fink [26] used linear regression to
predict how the performance of three planning algorithms depends on problem size and used these predictions for deciding
which algorithm to run for how long. In the same community, Howe and co-authors [45,97] used linear regression to predict
how both a planner’s runtime and its probability of success depend on various features of the planning problem; they also
applied these predictions to decide, on a per-instance basis, which of a finite set of algorithms should be run in order
to optimize a performance objective such as expected runtime. Specifically, they constructed a portfolio of planners that
ordered algorithms by their expected success probability divided by their expected runtime. In the constraint programming

2 We used early versions of the new modelling techniques described in Section 4, as well as the extensions to censored data described in Section 9 in
recent conference and workshop publications on algorithm configuration [59,55,56,54]. This article is the first to comprehensively evaluate the quality of
these models.
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