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a b s t r a c t

A distributed constraint optimization problem (DCOP) is a description of constraint optimization problem
where variables and constraints are distributed among a group of agents, and where each agent can only
interact with agents that share constraints. Even though DCOPs have been studied since the 1990s, there
are only a few attempts to address real world problems using this formalism, mainly because of the
complexity of the solution algorithms. In this paper, we compare 4 state-of-the-art DCOP approaches to
solve the vessel rotation planning problem (VRPP), which concerns deciding on the optimal sequence of
vessel visits to different terminals in a large seaport. We hereby also consider two agent structures: a
single layer and a multi-layer structure. For each of the structures, we compare the four different
algorithms for solving DCOPs, aiming at studying how the algorithms perform in VRPPs of increasing
sizes. We assess the methods based on the size and quantity of messages exchanged, computation time,
and quality of solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The distributed constraint optimization problem (DCOP) is a
theoretical model framework representing several agents that
jointly have to make decisions on values of variables so as to
minimize the sum of constraint costs, or to maximize the sum of
utility values (Weiss, 2013). A DCOP is defined as consisting of a set
of agents, variables and constraints between variables that reflect
the costs/utilities of assignments to variables. Control of values of
variables in DCOPs is distributed, with agents only able to assign
values to variables that they hold. Furthermore, agents are
assumed to know only the constraints involving variables that
they hold. In order to find a solution to a DCOP, agents need to
communicate with each other through message exchange. It is
commonly assumed that agents can only communicate with
agents that hold variables constrained with their own variables.
These agents with which an agent can communicate are called
their neighbors (Modi et al., 2005; Pearce and Tambe, 2007). The
DCOP formalism has been mainly applied in meeting scheduling
(Maheswaran et al., 2004; Petcu and Faltings, 2005; Greenstadt et
al., 2007), coordination of sensors in networks (Hosseini et al.,
2013; Zivan et al., 2009; Lesser et al., 2003), resource allocation in

disaster evacuation (Lass et al., 2008; Carpenter et al., 2007),
synchronization of traffic lights (Junges and Bazzan, 2008), and
management of power distribution networks (Kumar et al., 2009).
Distributed constraint optimization is well suited for formulating
those problems since they are distributed by nature.

A vessel rotation is the sequence in which a vessel visits dif-
ferent terminals in a large port. The vessel rotation planning
problem (VRPP) concerns the problem of assigning rotations to a
number of vessels. The decision makers involved are vessel
operators and terminal operators. Vessel operators are responsible
for the voyage plan of vessels and for coordinating inland shipping
activities, while terminal operators are responsible for the trans-
shipment of containers between deep sea vessels, trains, trucks,
and inland vessels as well as the temporary storage of containers.
An example of terminals in the port of Rotterdam is presented in
Fig. 1. As we can see, there are several clusters of terminals in a
port. Each vessel considered will unload or load containers at
different terminals. On a typical day, around 25 inland vessels visit
the port of Rotterdam, with each vessel visiting on average 8 dif-
ferent container terminals (Moonen et al., 2007).

Nowadays, vessel operators and terminal operators commu-
nicate with each other through telephone, fax and e-mail for
making appointments. Vessel operators each have their own pre-
ferences regarding when to visit particular terminals. However, in
practice, the appointments made often cannot be met (Melis et al.,
2003). In the port of Rotterdam, the average rotation time for an
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inland vessel is approximately 22.5 h, of which only 7.5 h are used
for loading and unloading, the rest of the time vessels are waiting
and traveling (Moonen et al., 2007). Typically, vessels need to visit
multiple terminals, which creates dependencies between the
activities performed at the terminals. This means that a dis-
turbance at one terminal can lead to the interruption of the
operations of a vessel and terminal operators elsewhere. This
makes it very difficult for vessel operators to stick to the
appointments made with terminal operators. Vessel operators
therefore will have longer waiting times at terminals, and term-
inals have to cope with uncertain arrival times of vessels and
underutilization of capacity than desired (Douma, 2008).

In recent years, there have been several attempts at better
aligning of vessel and terminal operations. In Schut et al. (2004), a
multi-agent based planning system named APPROACH is intro-
duced. In APPROACH, vessel operator and terminal operator align
their operations once a day, at a fixed time, for the next 24 h. To
determine a rotation, vessel operator agents can ask terminal
operator agents repeatedly whether certain time slots are con-
venient, and terminal operator agents reply with yes or no. It is an
intuitive and rather straightforward way to obtain agreement.
However, the outcomes of the approach sometimes contain routes
considered unlogical and with longer sailing times than needed
(Moonen et al., 2007). In Douma et al. (2009) the same type of
agents is used as in APPROACH, but with different interaction
protocols and agent structures. The authors aim at improving the
performance of the multi-agent systems by considering design
choices that could influence the acceptance of the end users and
the extent to which users can optimize their operations in Douma
et al. (2012). In particular, a simulation game was developed to
communicate and help future users get a clear picture of what the
solution is about. However, this work does not apply any optimi-
zation algorithms, so the solutions obtained, though more effi-
cient, are not guaranteed to be optimal solutions.

The fact that there is no automated way to generate rotation
plans for vessels leads to significant and uncertain waiting times
of vessels at terminals and causes idle time for terminal quay
resources. Although inland vessel transportation is an attractive
transportation mode, it is currently not used to its full potential.
The problem considered in this paper consists of finding in an
automated way an optimal solution to a VRPP using distributed
constraint optimization. We proposed an initial approach for
solving the VRPP with DCOP in Li et al. (2014). In that paper, the
vessel operators are modeled as a single layer of agents in the
DCOP framework. The agents have to communicate and
negotiate with each other to get optimal solutions. However, the
problem size that could be handled by the DCOP model and

proposed algorithms was too limited. The contribution of this
paper is in proposing a new multi-layer control architecture
and assessment of a number of state-of-the-art DCOP solution
methods. This will lead to a significant improvement over the
approach proposed before.

This paper is organized as follows. In Section 2, the definitions
for DCOP are given. Section 3 introduces the VRPP formally and
proposes reduce computational complexity of the VRPP at a sys-
tem structure level. For DCOP algorithms to solve the VRPPs are
introduced in Section 4. Section 5 presents the experimental
results of the four algorithms, used in either a single or multi-layer
setting, with respect to solution quality, communication load and
computation time. Conclusions and future work are given in Sec-
tion 6.

2. DCOP background

In this section, we first introduce the general definition and
framework of distributed constraint optimization. We adopt the
DCOP formalism as defined in Petcu (2009). A DCOP is represented
by a triple 〈A; COP;Ria〉, where:

� A¼ fA1;…;ANg is a set of N agents;
� COP ¼ fCOP1;…;COPNg is a set of disjoint, local Constraint

Optimization Problems (COPs); COPi is called the local sub-
problem of agent Ai; COPi is defined by a triple 〈X i;Di;Ri〉, where
X i ¼ fXi1;…;XijX i j g is a set of jX i j variables that belong to Ai;
Di ¼ fdi1;…; dijX i j g is a set of finite variable domains of the
variables in X i; Ri ¼ fri1;…; rijRi j g is a set of jRi j utility
functions, where each utility function rijRi j is with scope X i,
rijRi j : di1 �⋯� dijX i j-R [ f�1g. The utility functions are
used to represent objectives, as well as both hard and soft
constraints. For hard constraints, the value of the utility func-
tion is 0 if the constraint is satisfied; otherwise the value is �1.
For soft constraints, for different combinations of the values for
variables, different values will be assigned to the utility
functions.

� Ria ¼ fria1 ;…; riajRia j g is a set of so-called inter-agent utility func-
tions defined over variables of multiple agents. Each rial : scopeð
rial Þ-R expresses the utility for a joint decision obtained by the
agents that have variables involved in rial . The agents that have
variables can decide on the values of these variables involved in
rial and are called “responsible” for rial . Inter-agent utility func-
tions are considered known to all agents involved, i.e, those
agents of which the local variables are part of the inter-agent
utility function.

Fig. 1. Container terminals in Port of Rotterdam (adapted from Port of Rotterdam Authority, 2011).
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