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a b s t r a c t

Closed itemsets and their generators play an important role in frequent itemset and association rule
mining. They allow a lossless representation of all frequent itemsets and association rules and facilitate
mining. Some recent approaches discover frequent closed itemsets and generators separately. The Close
algorithm mines them simultaneously but it needs to scan the database many times. Based on the
properties and relationships of closed itemsets and generators, this study proposes GENCLOSE, an
efficient algorithm for mining frequent closed itemsets and generators simultaneously. The level-wise
search over an ItemsetObject–setGenerator–Tree enumerates the generators by using a necessary and
sufficient condition to produce (iþ1)-item generators from i-item generators. This condition, based on
transaction (object) sets that can be efficiently implemented using diffsets, is very convenient and
reliably proved. In the search, pre-closed itemsets are gradually extended using three proposed
extension operators. It is shown that these itemsets produce the expected closed itemsets. Extensive
experiments on many benchmark databases confirm the efficiency of the proposed approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Association rule mining (Agrawal et al., 1993) from transaction
databases is a fundamental technique in data mining. The task is to
determine the association rules that satisfy the pre-defined mini-
mum support and confidence from a given database. It was
originally designed for market basket applications (Agrawal
et al., 1993), but has been extended to various domains, such as
risk management, telecommunication networks, and bio-sequences.
Association rule mining has two phases (Agrawal and Srikant, 1994):
(a) extraction of all frequent itemsets whose occurrences exceed the
minimum support, and (b) generation of association rules that
satisfy the given minimum confidence from the itemsets. If all
frequent itemsets and their supports are known, association rule
generation is straightforward. Hence, most researchers have
concentrated on finding efficient methods for mining frequent
itemsets.

The basic algorithms for mining frequent itemsets are Apriori,
FP-growth, and Eclat. Apriori and its variations (Agrawal et al., 1993;

Agrawal and Srikant, 1994) are based on the Apriori property, which
states that every subset of a frequent itemset is also frequent, i.e.,
the support of an itemset never exceeds the supports of its subsets.
Although this anti-monotone property helps significantly reduce
the search space, Apriori-based algorithms are not efficient as they
generate many redundant candidates, which increase the CPU and
memory burden. Further, they have to scan the database multiple
times. To overcome these issues, frequent pattern tree-based algo-
rithms were proposed by Han and Pei (2000) and Han et al. (2004).
The original database is compressed into a FP-tree or a similar tree
structure. Using divide-and-conquer and depth-first search
approaches, all large itemsets are mined from frequent 1-
itemsets1 without having to rescan the database. However, in
interactive or incremental mining systems, where the users often
change the minimum support and insert new transactions into the
original database, FP-tree-inspired structures are unsuitable
because the trees need to be rebuilt. Both the Apriori and FP-tree
based methods work with a horizontal data format. Zaki proposed
Eclat (Zaki, 2000) and DEclat (Zaki and Gouda, 2003) for mining
with a vertical data format. These algorithms all show good
performance for sparse databases with short itemsets, such as
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market databases. For dense databases, which produce long fre-
quent itemsets, such as bio-sequences and telecommunication
networks, the frequent itemset class can grow to be unwieldy even
if the minimum support is large (Bayardo, 1998). A frequent itemset
of length n produces 2n�1 frequent non-empty, proper sub-
itemsets. Hence, the generation of frequent itemsets not only has
the large time complexity O(2N) (where N is the number of items)
but also produces many duplicates in the huge search space. Mining
only maximal frequent itemsets is one of the solutions for over-
coming the drawbacks mentioned above. Many algorithms have
been proposed for mining such itemsets (Bayardo, 1998; Burdick
et al., 2001). An itemset is maximal frequent if none of its proper
supersets are frequent. The number of maximal itemsets is much
smaller than that of all frequent itemsets (Zaki and Hsiao, 2005).
Although all sub-itemsets of a maximal itemset are frequent, their
actual supports are unknown. Further, since frequent itemsets can
come from different maximal ones, it takes a lot of time to mine and
delete the duplicates. Therefore, maximal frequent itemsets are
unsuitable for frequent itemset and association rule generation.

A more suitable approach to overcome this difficulty is using
the closures of itemsets, i.e., closed itemsets. The maximal itemset
class is contained in the closed itemset class, which, in turn, is a
subset of the itemset class. An extensive experimental evaluation
conducted by Zaki and Hsiao (2005) showed that, for real
databases, the number of frequent closed itemsets is about 10
times greater than that of maximal frequent itemsets, but about
100 times smaller than the cardinality of frequent itemsets. Hence,
mining frequent closed itemsets has received the attention of many
researchers (Pasquier et al., 1999; Pei et al., 2000; Wang et al.,
2003; Singh et al., 2005). An itemset is closed iff2 it is identical to
its closure. This concept is similar to the concept lattice (Birkhoff,
1967; Wille, 1982, 1992; Davey and Priestley, 1994; Ganter and
Wille, 1999) and has been recently applied (Boulicaut et al, 2003;
Zaki, 2004; Pasquier et al., 2005). A generator (Pasquier et al., 1999;
Szathmary et al., 2009) of an itemset is its minimal subset that has
the same closure as its own. Generators are also called minimal
generators (Zaki, 2004; Dong et al., 2005), key patterns (Bastide
et al., 2000), and free-sets (Boulicaut et al., 2003). Although there
are many definitions of closed itemsets and generators, they are
equivalent (see Section 2.1).

Closed itemsets together with their lattice structure and gen-
erators, called ℒGA , play an important role in both itemset and
association rule mining. First, their cardinality is typically orders of
magnitude much lower than that of all itemsets. Whenever the
user changes the minimum support, all frequently closed itemsets
and their generators can be quickly derived from ℒGA . Second,
two itemsets are equivalent if they have the same closure. In the
study by Anh et al. (2012b), based on this equivalence relation, all
itemsets were partitioned into disjoint equivalence classes. This
decreases most duplication in the generation of all itemsets.
Further, each class can be explored independently. In each class,
a closed itemset is a maximum set, its generators are minimal
subsets, and each remaining itemset has a unique representation
through its closure and generators. Thus, the duplication in the
generation of all frequent itemsets is completely removed. Hence,
frequent closed itemsets together with their generators produce
a lossless representation of all frequent itemsets. Third, many
studies have used the generators of closed itemset for mining
association rules (Balcazar, 2010; Bay et al., 2012; Anh et al., 2012a;
Pasquier et al., 1999, 2005; Zaki, 2004; Tin and Anh, 2010a; Tin
et al., 2010b). All rules can be obtained based on frequent closed
itemsets and their generators. The lattice of frequent closed item-
sets and generators with constraints is essential for the discovery

of frequent itemsets and association rules with item constraints,
especially when the minimum support and confidence thresholds
and item constraints often change (Anh et al., 2011, 2012b, 2014;
Hai et al., 2013, 2014).

The problem of mining frequent closed itemsets and generators
is stated as follows: given a transaction database and a minimum
support threshold, the task is to find all frequent closed itemsets
together with their generators. The algorithms for mining closed
itemsets can be divided into three approaches, namely generate-
and-test, divide-and-conquer and hybrid. Many algorithms have
been proposed for mining closed itemsets, including Close
(Pasquier et al., 1999) (generate-and-test), Closet (Pei et al.,
2000) and Closetþ (Wang et al., 2003) (divide-and-conquer),
and Charm (Zaki and Hsiao, 2005) and CloseMiner (Singh et al.,
2005) (hybrid). Algorithms for mining generators include Talky-G
(Szathmary et al., 2009) and MinimalGenerator (Zaki, 2004).
However, most of these algorithms discover frequent closed item-
sets and generators separately. The exception is Close, which
mines them simultaneously. However, its execution is computa-
tionally expensive. The present study proposes GENCLOSE, which
has the following key features:

1) Generators and frequent closed itemsets are simultaneously
found using breadth-first search over an IOG-tree (Itemset-
Object-set3-Generator tree).

2) At each level, the generators are first mined using a necessary
and sufficient condition to determine the class of (iþ1)-gen-
erators from the class of i-generators (iZ1) based on the
object-sets (or diffsets in practice).

3) Three extension operators are proposed to extend itemsets
toward their closures when mining generators.

The rest of this paper is organized as follows. Section 2 gives
the background of closed sets, generators, and their definitions.
Related work is also discussed in this section. Section 3 proposes
some necessary and sufficient conditions for producing generators
and three operators for extending generators to their closures.
Based on these results, the GENCLOSE algorithm is constructed. In
Section 4, GENCLOSE is compared to CharmLMG and DTouch, two
well-known algorithms for finding closed itemsets and generators.
The conclusion is given in Section 5. For better readability, some
proofs and implemented techniques are given in the appendices.

2. Foundation of mining closed itemsets and their generators

Consider two non-empty sets: O containing objects (or trans-
actions) and A containing all items (attributes) related to transac-
tions oAO. Let ℛ be a binary relation in O�A. A triple
D¼ ðO;A;ℛÞ is called a transaction database or a binary database,
or briefly a database. A set of items ADA and a set ODO are called
an itemset and an object-set, respectively. Let 2O and 2A be the
power sets of O and A. Two set functions of λ: 2O-2A and ρ:
2A-2O are determined as follows: 8AD A, ODO, Aa∅, Oa∅,
λ(O)¼{aAA|(o, a)Aℛ, 8oAO}, ρ(A)¼{oAO|(o, a)Aℛ, 8aAA}, and
as convention ρ(∅):¼O, λ(∅):¼A. The closure of an itemset A is
defined by h(A)¼λ(ρ(A)), and that of an object-set O is defined by
h0(O)¼ρ(λ(O)). Thus, itemset A is called closed iff it is identical to
its closure, i.e., A¼h(A). Similarly, an object-set O is closed iff O¼h0

(O) (for details, refer to the studies of Birkhoff (1967), Wille (1982),
Wille (1992), Davey and Priestley (1994), and Ganter and Wille
(1999)).

2 For convenience, we write “if and only if” simply as “iff”. 3 Object-set means set of objects.
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