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a b s t r a c t

Traditional Importance–Performance Analysis assumes the distribution of a given set of attributes in four

sets, “Keep up the good work”, “Concentrate here”, “Low priority” and “Possible overkill”, corresponding to the

four possibilities, high–high, low–high, low–low and high–low, of the pair performance–importance. This

can lead to ambiguities, contradictions or non-intuitive results, especially because the most real-world

classes are fuzzy rather than crisp. The fuzzy clustering is an important tool to identify the structure in

data, therefore we apply the Fuzzy C-Means Algorithm to obtain a fuzzy partition of a set of attributes.

A membership degree of every attribute to each of the sets mentioned above is determined, against to

the forcing categorization in traditional Importance–Performance Analysis. The main benefit is related

with the deriving of the managerial decisions which become more refined due to the fuzzy approach.

In addition, the development priorities and the directions in which the effort of an economic or non-

economic entity would be useless or even dangerous are identified on a rigorous basis and taking into

account only the internal structure of the input data.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Importance–Performance Analysis (IPA, for short) is a simple

and effective marketing technique which can help practitioners in

identifying improvement priorities and direct quality-based mar-

keting strategies. It was proposed by Martilla and James (1977)

to analyze the performance of automobile industry and after-

wards used in tourism and hospitality industry (Go & Zhang, 1997;

Hollenhorst, Olson, & Fortney, 1986), evaluation of restaurants din-

ing (Hu, Chen, & Ou, 2009b), evaluation of tourism policy (Evans &

Chon, 1989), identification of the tourists’ perceptions of the ho-

tel industry (Lewis & Chambers, 1989), monitoring and improv-

ing customer satisfaction (Almanza, Jaffe, & Lin, 1994; Lewis &

Chambers, 1989; Martin, 1995), restaurant positioning (Hsu, Byun,

& Yang, 1997; Keyt, Yavas, & Riecken, 1994), evaluation of service

attributes importance and customer satisfaction (Matzler, Sauer-

wein, & Heischmidt, 2003), health care (Hawes & Rao, 1985), edu-

cation (Ortinau, Bush, Bush, & Twible, 1989), slot player experience

(Suh & Erdem, 2004), perceptions of dental practices (Nitse & Bush,

1993), mobile telecommunication industry (Pezeshki, Mousavi, &

Grant, 2009), etc.
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Based on the answers of the customers to the questions about

each attribute “How important is it?” and “How well did the prod-

uct (service) perform?” or based on the answers to the second

question and the indirect calculation of importance (see Ban, Ban,

& Tuşe, 2015; Feng, Mangan, Wong, Xu, & Lalwani, 2014; Hancock

& Klockars, 1991), the performance and importance scores for each

attribute are calculated. The points with performance as the first

coordinate and importance as the second coordinate are placed on

a two-dimensional plot called an IPA grid. The horizontal and verti-

cal axes determine four quadrants and, implicitly, a classification of

attributes, as an important step in making strategic marketing de-

cisions, corresponding to the four possible combinations low-high,

as in Table 1.

The placement of axes is subject of a continuous debate. They

are determined by aggregating the data by arithmetic mean of the

values of importance and the values of performances, or they are

considered as the mid-points of the scales, or, sometimes, they are

placed in a subjective way (see Crompton & Duray, 1985; Kennedy,

1986; Martilla & James, 1977; Mount, 2000; Ortinau et al., 1989).

Beside the hidden assumptions in IPA models (see Hu, Lee, Yen,

& Tsai, 2009a), the choosing of axes without a natural relation-

ship with the data leads to contradictions, non-intuitive results,

subjective interpretations, ambiguities etc., such that many re-

searchers attempted to solve the shortcomings by offering revised

versions (see, e.g, Albrecht & Bradford, 1990; Arbore & Busacca,

2011; Bacon, 2012; Caber, Albayrak, & Matzler, 2012; Hu et al.,

2009a; Matzler et al., 2003; Oh, 2001). On the other hand, most
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Table 1

Quadrants in traditional IPA.

Quadrant Performance Importance

1: Keep up the good work (GW) High High

2: Concentrate here (CH) Low High

3: Low priority (LP) Low Low

4: Possible overkill (PO) High Low

real-world classes are fuzzy rather than crisp. A good example

is given even by the attributes in an traditional IPA. We can as-

sume that an attribute characterized by a two-dimensional point

(performance, importance), especially if it is situated close to axes,

has a certain membership degree to two or more quadrants (see

Table 1). Bacon (2003) suggests that “a partition of attributes that

represents a smoother transition from high to low priorities is

more appropriate to improve the validity of establishing priorities

in IP space”.

Taking into account the above discussion, in the present paper

we propose a method of determination of the fuzzy sets, called as

in the crisp case, “Keep up the good work” (GW), “Concentrate here”

(CH), “Low priority” (LP), “Possible overkill” (PO), based on a fuzzy

clustering algorithm and corresponding to the quadrants in Table 1.

We obtain a fuzzy partition of the initial set of attributes, that is

four disjoint fuzzy sets whose union is the initial crisp set of at-

tributes. In fact, a membership degree of each attribute to every set

in {GW, CH, LP, PO} is determined. This description is more power-

ful and suitable for deriving managerial decisions than the forcing

categorization in the traditional IPA. The efficiency and feasibility

of the new method is illustrated on existing data sets in the recent

literature. A comparison with the traditional IPA is possible after

the defuzzification of the fuzzy partition. Even if we cannot give a

mathematical proof of the superiority of the proposed method, the

tools which identify natural structure of data – like fuzzy cluster-

ing – seem to be more suitable than other artificial approaches in

IPA.

2. Fuzzy partition and fuzzy clustering by Fuzzy C-Means

Algorithm

A fuzzy set on X is a mapping A: X → [0, 1], where A(x) repre-

sents the membership degree of the object x to the fuzzy set A. As

usual, we denote the empty fuzzy set by ∅, that is ∅(x) = 0, for

any x ∈ X and by X the fuzzy set having the membership degree

equal to 1, that is X(x) = 1, for any x ∈ X. Two fuzzy sets A and B

on X are equal (A = B) if and only if A(x) = B(x), for every x ∈ X.

The union (A ∪ B) and the intersection (A ∩ B) of two fuzzy sets A

and B may be defined in many ways, based on triangular conorms

and triangular norms, respectively. In this paper we consider the

following definitions:

(A ∪ B)(x) = min (A(x) + B(x), 1),

(A ∩ B)(x) = max (A(x) + B(x) − 1, 0),

for every x ∈ X. The union and intersection of fuzzy sets can be ex-

tended to the finite case in an obvious way (see, e.g., Bede (2013)).

Because A ∪ B = X and A ∩ B = ∅ if and only if A(x) + B(x) = 1, for

every x ∈ X, a natural definition of a fuzzy partition can be given.

Definition 1. (see, e.g., Dumitrescu, Lazzerini, and Jain, 2000, p.

70) The family {A1, . . . , As}, s > 2, of fuzzy sets on X is called dis-

joint if and only if the equality(
r∪

i=1
Ai

)
∩ Ar+1 = ∅

holds for r ∈ {1, . . . , s − 1}.

Definition 2. (see, e.g., Dumitrescu et al., 2000, p. 72) Let A1, . . . ,

As, s > 2 , be fuzzy sets on X. The family P = {A1, . . . , As} is a fuzzy

partition of X if and only if the following requirements are fulfilled:

(i) P is a disjoint family of fuzzy sets

(ii) ∪s
i=1

Ai = X.

An element Ai ∈ P is called an atom of the fuzzy partition P.

A characterization of a fuzzy partition is given by (see Dumitrescu

et al., 2000, pp. 72–73):

Proposition 3. P = {A1, . . . , As} is a fuzzy partition of X if and only∑s
i=1 Ai(x) = 1, for every x ∈ X.

It is immediate that we may associate an s × n matrix

Q =
(
qi j

)
, i ∈ {1, . . . , s}, j ∈ {1, . . . , n} with every fuzzy partition P =

{A1, . . . , As} of a finite set X = {x1, . . . , xn}, where qi j = Ai(x j) is the

membership degree of the element xj to the atom Ai ∈ P, and∑s
i=1 qi j = 1, for every j ∈ {1, . . . , n}. Q may be called the parti-

tion matrix or the matrix representation of the fuzzy partition P. If

Qi is the matrix representation of the fuzzy partition Pi, i ∈ {1, 2}

then we define the distance between P1 and P2 as (see Dumitrescu

et al., 2000)

D
(
P1, P2

)
= ‖Q1 − Q2‖,

where ‖·‖ may be defined in various ways. For example,

‖Q‖ = max
i∈{1,...,s}, j∈{1,...,n}

|qi j|.
It is well known that the fuzzy clustering is an important tool

to identify the structure in data (see, e.g., Bezdek, 1981; Bezdek,

Ehrlich, & Full, 1984; Cundari, Sârbu, & Pop, 2002; Dumitrescu

et al., 2000; Kandel, 1982; Mei & Chen, 2014; Wang, Ma, Lao, &

Wang, 2014; Zhao, Fan, & Liu, 2014) and, in addition, it does not

require a very sophisticated background.

Let X = {x1, . . . , xn} ⊂ R
p be a set of vectors, where n is the

number of objects and p is the number of characteristics, x j =
(x

j
1
, . . . , x

j
p), and L = {L1, . . . , Ls} be a s-tuple of prototypes, Li =

(Li
1
, . . . , Li

p), each of them characterizing one of the s clusters of

the data set. A partition of X into s fuzzy clusters is performed

by minimizing the objective function (Cundari et al., 2002; Du-

mitrescu et al., 2000; Dumitrescu, Sârbu, and Pop, 1994; Pop,

Sârbu, Horowitz, and Dumitrescu, 1996)

J(P, L) =
s∑

i=1

n∑
j=1

(Ai(x j))2d2(x j, Li), (1)

where P = {A1, . . . , As} is the fuzzy partition of X, Ai(x
j) ∈ [0, 1]

represents the membership degree of a point xj to cluster Ai and d

is a distance on R
p, usually the Euclidean distance, that is

d2(x j, Li) =
p∑

k=1

(
x j

k
− Li

k

)2
. (2)

For a given set of prototypes L, the minimum of the function

J(·, L) is obtained for (see Dumitrescu et al., 2000)

Ai(x j) = 1∑s
k=1

d2(x j ,Li)
d2(x j ,Lk)

, i ∈ {1, . . . , s}, j ∈ {1, . . . , n}. (3)

For a given partition P, the minimum of the function J(P, ·) is ob-

tained for (see Dumitrescu et al., 2000)

Li =
∑n

j=1(Ai(x j))
2x j∑n

j=1(Ai(x j))2
, i ∈ {1, . . . , s}. (4)

The optimal fuzzy partition of X is determined by using an iter-

ative method, where J is successively minimized with respect to P

and L. The procedure, described below, is called Fuzzy C-Means Al-

gorithm (see Bezdek, 1981; Dumitrescu et al., 2000, pp. 293–295).



Download English Version:

https://daneshyari.com/en/article/382005

Download Persian Version:

https://daneshyari.com/article/382005

Daneshyari.com

https://daneshyari.com/en/article/382005
https://daneshyari.com/article/382005
https://daneshyari.com

