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a b s t r a c t

The application of Data Envelopment Analysis (DEA) as a tool for efficiency evaluation has become

widespread in public and private sector organizations. Since decision makers are often interested in a

complete ranking of the evaluated units according to their performance, procedures that effectively dis-

criminate the units are of key importance for designing intelligent decision support systems to measure

and evaluate different alternatives for a better allocation of resources. This paper proposes a new method

for ranking alternatives that uses common-weight DEA under a multiobjective optimization approach.

The concept of distance to an ideal is thereby used as a means of selecting a set of weights that puts

all the decision units in a favorable position in a simultaneous sense. Some numerical examples and a

thorough computational experiment show that the approach followed here provides sound results for

ranking alternatives and outperforms other known methods in discriminating the alternatives, therefore

encouraging its use as a valuable decision tool for managers and policy makers.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA), first introduced in Charnes,

Cooper, and Rhodes (1978), is a mathematical programming tech-

nique useful for assessing the relative efficiency of a homogeneous

set of decision making units (DMUs) in a production system with

multiple inputs and multiple outputs. Subsequent developments

have proved DEA as a valuable tool for performance evaluation

in a wide number of fields, with interesting applications in health

care, education, banking, manufacturing, etc. In the DEA method-

ology, for each DMU an efficiency score is computed as a ratio of

a weighted sum of outputs to a weighted sum of inputs, with such

set of weights found to guarantee the most favorable result for the

DMU under evaluation. According to this score, every DMU is ei-

ther found to perform efficiently or deemed inefficient, in which

case DEA can find a corresponding set of efficient units to be used

as a benchmark for improvement.

The problem tackled by DEA highly resembles the one studied

within Multicriteria Decision Making (MCDM), in which a num-

ber of alternatives have to be evaluated and compared in terms

of several conflicting criteria in order to achieve a ranking of the

alternatives and/or select the best option. In fact, ranking a set

of alternatives in real-world applications often turns into a rather

overwhelming problem for many decision-makers that may require
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expertise and computational support, especially when the num-

ber of alternatives and criteria grow, and so the problem has been

extensively studied. Particularly, the methodological connections

existing between DEA and MCDM approaches (Belton & Vickers,

1993, Stewart, 1996) that become clear when we identify alterna-

tives with DMUs and criteria with inputs and outputs, have led

some authors to propose the use of DEA as a tool for MCDM (Doyle

& Green, 1993, Mavrotas & Trifillis, 2006, Sarkis, 2000).

However, when using standard DEA techniques with a ranking

purpose some difficulties may arise. First, DEA efficiency scores

do not always allow a complete ordering of the alternatives since

many of the DMUs are usually classified as efficient. The lack of

discrimination in DEA applications is well documented, particu-

larly when the number of inputs and outputs is too high rela-

tive to the number of DMUs being evaluated, and a number of

techniques have been proposed to alleviate this drawback (Adler,

Friedman, & Sinuany-Stern, 2002, Angulo-Meza & Lins, 2002,

Hosseinzadeh Lofti et al., 2013). Moreover, it is argued that us-

ing different sets of weights is inappropriate in a ranking context

because such flexibility deters the comparison among DMUs on a

common base (Kao & Hung, 2005). Also, it has been noticed that

some units classified as inefficient could in turn be better overall

performers than certain efficient ones, possibly involved in an un-

reasonable weight scheme induced by the maximization of their

own efficiency (Dyson & Thanassoulis, 1988).

The above reasoning suggests that, when DEA is being used

with a ranking purpose, a common set of weights (CSW) is highly

recommended in order to fairly expose all the units to the same
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light (Despotis, 2002) and thus provide a common base for the

ranking. Several approaches have been proposed in the DEA liter-

ature to obtain a common set of weights (see Kao & Hung, 2005,

Liu & Peng, 2008, Wang, Luo, & Lan, 2011b and references therein),

including methods based on multivariate statistical analysis, re-

gression analysis or cross-efficiency analysis, among others. How-

ever, the present research is mainly interested in those approaches

based on a multiobjective view since they represent a natural gen-

eralization of the traditional DEA approach: the search of a DMU-

dependent set of weights that is the most favorable to each in-

dividual DMU is generalized to the search of a common set of

weights that is the most favorable to all the DMUs in a simultane-

ous way. This idea can be accomplished through the simultaneous

maximization of the efficiency scores of all the DMUs, leading to

a multiobjective programming problem that can be solved using a

Compromise Programming approach (Despotis, 2002, Kao & Hung,

2005, Zohrehbandian, Makui, & Alinezhad, 2010). Some other au-

thors approach the computation of the common weights by con-

sidering the simultaneous minimization of the differences between

the weighted sum of inputs and the weighted sum of outputs for

each DMU (Chen, Larbani, & Chang, 2009, Chiang, Hwang, & Liu,

2011). In this way they obtain a linear programming problem that

is equivalent to the simultaneous maximization of efficiency ratios.

Earlier methods built on a similar rationale are based on maximiz-

ing the average of efficiency ratios of all the units (Roll & Golany,

1993) or maximizing the minimum efficiency ratio (Troutt, 1997).

The objective of this research is to further investigate the appli-

cation of DEA as a ranking tool within MCDM and therefore in the

following sections a new DEA-based procedure for ranking alterna-

tives is proposed which combines the CSW concept with the mul-

tiobjective paradigm that characterizes the above-mentioned ap-

proaches. More specifically, the concept of distance to an ideal is

used to obtain a common set of weights that is favorable to all

the alternatives simultaneously. The distance to an ideal DMU, de-

fined as a hypothetical unit that consumes the least inputs to pro-

duce the most outputs, has been explored previously in a context

of cross-efficiency evaluation, with each DMU choosing its own set

of weights to minimize its distance from this ideal DMU (Wang,

Chin, & Luo, 2011a) as well as in a ranking context (Jahanshahloo,

Hosseinzadeh Lofti, Khanmohammadi, Kazemimanesh, & Rezaie,

2010, Sun, Wu, & Guo, 2013). However, the approach followed here

differs from these former works since it does not rely on the def-

inition of such an ideal unit, but on the computation of the ideal

point in a 2-dimension space where the DMUs are mapped when

the aggregate input and output measures are considered.

The rest of the paper is organized as follows. After this intro-

duction, the main topics concerning MCDM and DEA approaches

are briefly reviewed, with special attention to the most rele-

vant CSW-DEA methods. Section 3 introduces a new DEA-based

procedure for ranking a set of alternatives that combines the

common-weight concept and the multiobjective methodology. The

last sections illustrate the usefulness of the proposed approach

and validate its application as a ranking tool within a multicriteria

decision framework: in Section 4 some numerical examples are ex-

amined and Section 5 summarizes the results of the computational

study performed. Finally, some concluding remarks are provided.

2. Methodological background

The term Multiple Criteria Decision Making is used to describe

a collection of formal approaches that seeks to explicitly account

for multiple conflicting criteria in the evaluation and comparison

of a number of alternatives. Both MCDA and DEA have been re-

ceiving considerable attention in the specialized literature for the

last 30 years, developing independently to each another during the

first decades. However, after several authors established a num-

ber of analogies between MCDM and DEA methodologies (Belton &

Vickers, 1993, Doyle & Green, 1993, Golany, 1988, Stewart, 1996),

the two fields have been evolving in a more cooperative mode. In

this work both approaches come together to solve a ranking prob-

lem.

First, some of the main concepts and techniques concerning

MCDM and DEA are reviewed in this section.

2.1. MCDM preliminaries

The awareness of the multidimensional nature of socioeco-

nomic phenomena and the need to consider more than a single

criterion when judging them have encouraged the interest in the

Multiple Criteria Decision Making paradigm. The multicriteria de-

cision problem is mathematically defined as

vopt (z1(x), z2(x), . . . zk(x))
s. t.

x ∈ X
(1)

where X represents the set of possible alternatives or feasible re-

gion, x ∈ X is a n-dimensional vector containing decision vari-

ables, zj are the objective functions representing the criteria that

the decision-maker wants to attain and vopt stands for the simul-

taneous optimization of the k objective functions. In this context

an optimal solution, which attains the optimum value of all the

objectives, is generally impossible to find due to the conflictive na-

ture of the criteria. Hence solving a multicriteria problem implies

to find an efficient solution, which cannot be altered to improve

one criterion without deteriorating at least another one.

Many different techniques are available for handling an arbi-

trary multicriteria decision problem (Steuer, 1986), a number of

which essentially combine the multiple objectives into one single

objective. Particularly popular is the weighting method, which at-

tempts the optimization of a weighted sum of the k objectives,

and the Compromise Programming method, where the solution

with minimum Lp – distance to the ideal point, the one that com-

prises the optimal outcomes of all the objectives, is selected. This

approach perfectly captures what is known as Zeleny’s axiom of

choice, stating that "alternatives that are closer to the ideal are

preferred to those that are farther away" (Zeleny, 1982).

Then, if z∗∈Rk represents the coordinates of the ideal point, by

considering the family of Lp metrics, the objective of choosing a

solution as close as possible to the ideal is accomplished by

min

(
k∑

i=1

λi

(
z∗

i
− zi(x)

)p

)1/p

s.t.
x ∈ X

(2)

where λi is a weight associated with the ith objective function

and the parameter 1 ≤ p ≤ ∞ is related to the relative contribu-

tions of individual deviations. Particularly, when p = 1 the distance

measures the sum of individual deviations over the k objectives,

which is the longest distance between the two points in a geo-

metric sense, or "Manhattan distance", when p = 2 the Euclidean

distance to the ideal point is considered and ultimately, for p =
∞, the largest of the deviations completely dominates the distance

measure. In this way, p = 1 represents total compensability among

objectives and p = ∞ represents no compensability among objec-

tives. Since other values of p are not easily interpreted, those are

the most commonly used.

2.2. DEA preliminaries

Let us consider n production units or DMUs, each of them be-

ing evaluated in terms of r inputs and s outputs. Let xij and yik

be nonnegative values denoting respectively the amount consumed
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