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a b s t r a c t

We present a new dissimilarity, which combines connectivity and density information. Usually, connectiv-

ity and density are conceived as mutually exclusive concepts; however, we discuss a novel procedure to

merge both information sources. Once we have calculated the new dissimilarity, we apply MDS in order

to find a low dimensional vector space representation. The new data representation can be used for clus-

tering and data visualization, which is not pursued in this paper. Instead we use clustering to estimate

the gain from our approach consisting of dissimilarity + MDS. Hence, we analyze the partitions’ quality

obtained by clustering high dimensional data with various well known clustering algorithms based on

density, connectivity and message passing, as well as simple algorithms like k-means and Hierarchical

Clustering (HC). The quality gap between the partitions found by k-means and HC alone compared to k-

means and HC using our new low dimensional vector space representation is remarkable. Moreover, our

tests using high dimensional gene expression and image data confirm these results and show a steady

performance, which surpasses spectral clustering and other algorithms relevant to our work.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering algorithms can be used to uncover unknown rela-

tions existing in a set of unlabeled data. These algorithms can

be divided into families according to their characteristics, for

example there are partitional and hierarchical algorithms (Jain,

Murty, & Flynn, 1999; Xu & Wunsch II, 2005). Similarly, hierar-

chical algorithms can be divided into agglomerative and divisive

methods. Thus, we could make a taxonomy to categorize all

clustering methods. This classification of algorithms into “families”

shows a particular approach to clustering, one requiring many

different algorithms for different kinds of data. On the contrary,

we aspire to solve many clustering tasks using a reduced number

of simple algorithms. Moreover, our main goal is to use the most

simple algorithms available. As a result, we direct our interest

into clustering methods involving kernels (Dhillon, Guan, & Kulis,

2004; Mika et al., 1999) or more general representations based

on dissimilarity matrix (Pekalska & Duin, 2008; Pekalska, Paclik,

& Duin, 2002; Schölkopf, 2001). These types of methods are able

to simplify the clustering procedure by using a low dimensional

vector representation derived from the kernel or dissimilarity

matrix. There is a rich bibliography describing both groups of
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methods including also a crossover area discussing the relation

between kernels and dissimilarities, i.e. a formal discussion ex-

plaining when a dissimilarity can be treated as a kernel and how

to proceed when it cannot (Pekalska & Duin, 2008; Schölkopf,

2001; Williams, 2002). The dissimilarity proposed in this work

does not qualify as a Mercer Kernel, hence, its decomposition

leads to a non-Euclidean space. To find an Euclidean representa-

tion approximating the original data we only consider the positive

spectra of the dissimilarity. Moreover, we only use a small subset

of the eigenvectors of the centered dissimilarity. However, we can

accurately represent datasets formed by arbitrary shaped clusters

or high dimensional noisy data, even if the clusters do not have

spherical shape or Gaussian distribution.

As we stated above, our motivation is to reduce the complex-

ity of a clustering problem by improving the representation of the

data. We have pursued this goal in a previous work and, as a re-

sult, we developed a penalized metric (Bayá & Granitto, 2011) that

permitted us to cluster with a simple algorithm data having ar-

bitrary shapes and high dimensionality. However, this metric could

not overcome many of the limitations from methods based on con-

nectivity. The solution proposed in the present paper aims at: (i)

finding a lower dimensional representation of the original data and

(ii) overcoming some of the limitations known to exist in connec-

tivity approaches (Bayá & Granitto, 2011). Thus, we build a new

dissimilarity combining connectivity and density information as an

improvement to methods based solely on connectivity. Next, we

apply MDS to the dissimilarity to find a new representation of the
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original data. The representation found by MDS allows us to use

any clustering algorithm without restricting us to those relying on

dissimilarity matrix. Finally, we use a simple clustering algorithm

to find groups in the new representation and compare the quality

of them with other similar algorithms.

This manuscript has the following structure: Section 2 first con-

siders previous works related to our ideas and goals. It also de-

scribes our two dissimilarity variants, the merging strategy and

other related matters. Section 3 discusses first how to set up the

parameters of our dissimilarity and then it shows the results of our

experiments on real data. Finally, Section 4 presents some conclu-

sions and considers ideas for future work.

2. Finding a new data representation

2.1. Related work

The idea of developing a method able to model the complex

relations between the patterns of a dataset is not new. There are

many dimensionality reduction methods (Belkin & Niyogi, 2003;

Roweis & Saul, 2000; Tenenbaum, De Silva, & Langford, 2000), ker-

nel methods (Mika et al., 1999) and spectral methods (Luxburg,

2007; Nadler & Galun, 2007) trying to accomplish this. Dimen-

sionality reduction target is to find a new representation using

fewer dimensions that preserves the relations existing in the orig-

inal data. The outcome from these methods can be used for visu-

alization, clustering or classification. However, applying clustering

or classification after dimensionality reduction might not have al-

ways the desired effect. Preserving the ties between the new rep-

resentation and the original data might not always be helpful to

find “good” partitions. For example, Principal Components Analysis

(James, Witten, Hastie, & Tibshirani, 2014) finds a representation

preserving ties by retaining the components with highest stan-

dard deviation, however, the components dividing data into groups

might not be those with highest standard deviation. Analogously,

the cost function used by ISOMAP (Tenenbaum et al., 2000) or LLE

(Roweis & Saul, 2000) to find a lower data representation does not

emphasize in preserving the natural differences within the data.

Our dissimilarity, on the contrary, is specially designed for clus-

tering rather than visualization, hence, it emphasizes natural dif-

ferences within the data. Therefore, after applying MDS we find a

representation making the subsequent clustering step easier.

In a previous work we developed a distance called PKNNG

(Bayá & Granitto, 2011), which we successfully used to cluster

arbitrary shaped clusters, high dimensional noisy data and data

embedded in a manifold. However, we were restricted to combine

it with a small subset of clustering algorithms since PKNNG

transformed the original data into a dissimilarity matrix. This

dissimilarity is based on a graph of neighbors, hence, it relies

only on connectivity. The components from the neighbor graph

are connected by penalized edges joining the closest components

with a single edge. Finally, the geodesic distance is calculated

between all pairs using Dijkstra’s algorithm. Since PKNNG relies

on connectivity there are cases that are too complicated or not

possible to solve, for example, a pair of overlapped spherical

clusters with Gaussian distribution. We explore the use of density

information as a possible solution to some of the limitations of

PKNNG. There is a similarity known as Evidence Accumulation by

multiple Clustering (EAC) (Fred & Jain, 2005), which is used for

clustering. However, there is a range of values for which EAC does

not behave as a good similarity because it fragments the infor-

mation to the point of rendering it useless. Fred and Jain (2005)

discuss this issue in great detail. Yet, we have found out that frag-

mented information provides us with interesting insight about the

density among neighbors. Our method aggregates this information

to PKNNG in an effort to overcome previous limitations.

Our dissimilarity is used in combination with Classical MDS

to find a more simple representation of the original data. There

are several methods that have already explored this topic, for

instance, Xu, Hancock, and Wilson (2014) used Ricci flows to

remove artifacts rendering dissimilarity non-Euclidean. Later they

tested their corrected dissimilarity in classification problems.

Solving classification problems in vector spaces derived from

dissimilarities has been properly introduced by Pękalska and Duin

(Pekalska & Duin, 2008; Pekalska et al., 2002). There are some

results under particular circumstances showing that classification

using dissimilarity based feature spaces can be better than the

ones obtained based on kernels (Kim & Duin, 2010). However, it

should be noted that the data supporting this conclusion is re-

duced. There are other contributions related to our work pursuing

visualization rather than clustering. Isomap (Tenenbaum et al.,

2000) aims to find a lower dimensional representation from a

dataset by using connectivity, connections through the shortest

path and geodesic distance. Both Isomap and PKNNG share some

features, however, the penalization scheme from PKNNG opposes

to the idea of preserving geometrical relations. Instead, PKNNG

is intended for clustering, hence it penalizes non-neighboring

distances. There are methods pursuing the objective of ISOMAP

but using different strategies to achieve it, among the most

relevant visualization/dimensionality reduction methods we can

name: Local Liner Embedding (LLE) (Roweis & Saul, 2000), Lapla-

cian Eigenmaps (Belkin & Niyogi, 2003) and stochastic neighbor

embedding (SNE) (Hinton & Roweis, 2003).

Our objective is to construct a dissimilarity with discriminative

properties by aggregating two sources of information: density and

connectivity. The discriminative properties emphasize the dissim-

ilarity between non-neighboring samples in order to simplify the

search for clusters. We use three methods as basic blocks to build

our function. The first two blocks are used to measure density by

one of two methods: (1) EAC, which is a method based on ensem-

bles of k-means (Forgy, 1965) and (2) a method based on k nearest

neighbors (Mitchell, 1997) (k-nn). The k-nn ensembles mimics the

behavior of EAC but using an unsupervised k-nn algorithm instead.

As a result, the first and second block originate each a dissimilar-

ity variant, which estimates density in a different way. The third

building block is the PKNNG distance. Finally, after having our dis-

similarity we apply classical MDS (Cox & Cox, 2000) to find a lower

dimensional data representation, which we use to find clusters.

Fig. 1 shows a diagram of the proposed pipeline and Section 2.3

provides a thorough description of our approach.

2.2. Finding a low dimensional data representation

Assuming there is a generic dissimilarity (D ∈ Rn×n) we would

like to find a new vector space representation based on D. We de-

fine S = D2 and H = I − 1
n 11T

, where S is a squared dissimilarity

matrix (si j = d2
i j

), I is the identity matrix, 1 is a n × 1 vector of

ones and H is the centering matrix. We use these elements to find

a new vector representation X:

B = −HSH
2

= V�V T = XXT ,
(1)

where � is a diagonal matrix containing the eigenvalues of B and V

is an orthogonal eigenvectors matrix. When B is not a semidefinite

matrix there will be negative eigenvalues in �. A discussion about

this issue and the full derivation of the previous equation can be

found in Pekalska et al. (2002), Williams (2002) and Schölkopf

(2001). Mercer’s Theorem (Cristianini and Shawe-Taylor, 2000, Sec-

tion 3.3.1) relates the eigenvalues from � to squared norms in the

new space representation having V as a base. Hence, the existence

of negative eigenvalues amounts to negative squared distances,

which contradicts Euclidean geometry. We solve this problem by
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