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The paper presents a new approach to the dynamic classifier selection in an ensemble by applying the best

suited classifier for the particular testing sample. It is based on the area under curve (AUC) of the receiver

operating characteristic (ROC) of each classifier. To allow application of different types of classifiers in an en-

semble and to reduce the influence of outliers, the quantile representation of the signals is used. The quantiles

divide the ordered data into essentially equal-sized data subsets providing approximately uniform distribu-

tion of [0–1] support for each data point. In this way the recognition problem is less sensitive to the outliers,

scales and noise contained in the input attributes. The numerical results presented for the chosen benchmark

data-mining sets and for the data-set of images representing melanoma and non-melanoma skin lesions have

shown high efficiency of the proposed approach and superiority to the existing methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The combination of many classifiers in an ensemble is a well-

known method of increasing the quality of recognition and classifica-

tion tasks (Kuncheva, 2004; Omari & Figueiras-Vidal, 2015; Osowski,

Markiewicz, & Tran Hoai, 2008; Parvin, Babouli, & Alinejad-Rokny,

2015; Xu, Krzyżak, & Suen, 1992). Each classifier, which relies its op-

eration on different principle, may attain different degree of success

in a specific application problem. Maybe none of them is perfect or

as good as expected. Thus, there is a need to combine different solu-

tions of classifiers, so that a better result could be obtained. Combin-

ing many trained networks together helps to integrate the knowledge

acquired by the component classifiers and in this way to improve the

accuracy of the results of final classification.

There are many different solutions to the integration problem. The

usual approach relies on applying all classifiers from the ensemble to

classify the testing patterns and on the basis of their results the final

response is formed. Different static fusion strategies are applied in

practice. Among the most often used is the voting principle organized

in different ways, application of naive Bayes rule, Dempster–Shafer
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methods, Kullback–Leibler rule, meta-evolutionary ensemble, princi-

pal component analysis or application of additional integrating clas-

sifier (Haghighi, Vahedian, & Hadi, 2011; Kim, Stree, & Mencher, 2006;

Kuncheva, 2004; Omari & Figueiras-Vidal, 2015; Osowski et al., 2008;

Xu et al., 1992). Boosting, bagging, random subspace methods play

a major part of such solutions (Efron & Tibshirani, 1993; Friedman,

Hastie, & Tibshirani, 2000). These rules take into account all classi-

fiers of an ensemble to perform the classification task and then ex-

ploit the statistics of their results to elaborate the final classification

decision.

This paper applies different strategy, called in general dynamic

classifier selection (DCS) (Britto, Sabourin, & Oliveira, 2014; Didaci,

Giacinto, Roli, & Marcialis, 2005; Ko, Sabourin, & Britto, 2008; Parvin

et al. 2015; Woods, Kegelmeyer, & Bowyer, 1997). The final classi-

fication of each testing sample is done by only one classifier from

an ensemble, which is the best suited to the particular analyzed

task. The best classifier is selected on the basis of its local discrim-

inatory power in the neighborhood of the testing sample. Closely,

we examine the generalization ability of all classifiers in the neigh-

borhood of the testing sample. In computation of the discrimina-

tory power of the classifier we assign higher weights to the ana-

lyzed observations which are closer to the actual testing sample. Se-

lection of the best suited classifier is dependent on the distance of

the testing sample to the samples used in learning. The selection

is done by estimating the competence of the classifiers available in

the pool on local regions of the feature space. In this way the clas-

sifier of the highest classification accuracy in the region is chosen.
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Thanks to this we are able to achieve the highest yield, since each

classification task is performed by the classifier best suited to this

particular task.

Comprehensive review of DCS is done in recent publications

(Britto et al., 2014; Didaci et al., 2005; Ko et al., 2008; Parvin et al.,

2015). The most important point in DCS is to select the most accurate

classifier in the neighborhood of the analyzed sample. Different ap-

proaches are used in this task: the overall local accuracy, local class

accuracy, a priori selection, a posteriori selection or k-nearest oracle

(Didaci et al., 2005). All of them are done on the original data points.

Another approach combines static ensemble with DCS (Parvin et al.,

2015), by selecting classifiers based on clustering principle. The DCS

has been also extended to selection of an ensemble for every test data

point (Ko et al., 2008). These classical approaches to selection of the

most accurate classifier suffer from such problems, as different ranges

of output signals of used classifiers, influence of outliers and noise

contaminating data or difficult choice of number of learning samples

taken into account in the process of the best classifier selection.

Our approach avoids most of these problems by applying the

quantile representation of data. The quantiles divide the ordered data

into essentially equal-sized data subsets providing approximately

uniform distribution of [0-1] support for each data point. Thanks to

this the recognition problem is less sensitive to the outliers, scales

and noise contained in the input attributes. Additionally, they form

an ideal platform for cooperation of different types of classifiers ar-

ranged in an ensemble. Moreover, we propose novel way of choosing

the best suited classifier for the particular testing sample. The choice

is done on the basis of the area under curve (AUC) of the receiver op-

erating characteristic (ROC) of each classifier.

The experiments performed on the benchmark problems and on

the real task of recognition of melanoma from the non-melanoma le-

sions have shown very high efficiency of the proposed approach. In

all cases the results of our method were better in the classification

accuracy than the stand alone individual solutions.

The outline of the paper is as follows. Section 2 introduces

the quantile representation of data. Section 3 presents the general

description of the presented approach. Section 4 is devoted to the

application of quantiles in classification of the data. The results of

numerical experiments performed on the benchmark data are pre-

sented in Section 5. Section 6 is devoted to the real problem of

melanoma recognition. The quality of solution is measured on the ba-

sis of area under ROC curve in all these experiments and the accuracy

of class recognition. The last section presents the conclusions.

2. Quantile representation of data

In our approach the important role is fulfilled by the quantile

representation of the data (Chu & Nakayama, 2010; Matlab, 2012).

Quantiles are the points taken at the regular intervals from the cu-

mulative distribution function (CDF) of a random variable. They mark

the boundaries between consecutive subsets. Let us assume there is

a given feature (variable) x of the particular values x1, x2,…, xn. The

empirical cumulative distribution function is defined by the formula

F(x) = #{xi : xi ≤ x}
n

(1)

for all x ∈ R. Formally, the quantile of order p is defined by:

qp = min
{

x : F(x) ≥ p
}

(2)

Roughly speaking, it means the quantile of the order p divides the

ordered series of the random variable into two subsets in the propor-

tions: p and 1 − p.

For estimating a quantile representation we have used the Matlab

function tiedrank (Matlab, 2012) applied in the Matlab notation as

(2 × tiedrank(x) − 1)/(2 × length(x)). For example, let us consider the

Table 1

The exemplary series of data

(column 1) and the corre-

sponding quantiles (column 2).

qp p

–3 0.0555

4 0.2222

4 0.2222

5 0.3889

100 0.5000

1001 0.72220

1001 0.7222

1001 0.7222

2000 0.9444

data in the ordered series of random variable as shown in the first

column of the Table 1.

We get their quantile representation of the form expressed in col-

umn 2 of the table (variable p). Observe that irrespective of the dis-

tribution of the original series, the quantile representation is always

uniform and is in the range [0, 1]. The observations, which are far

from each other in original space (for example 1001 and 2000), may

be very close in the quantile representation (0.7222 and 0.9444, re-

spectively). It depends only on their positions in the ordered series.

The quantiles are useful measures because they are less sensitive

to the fat-tailed distributions and outliers. At the same time they are

well supported by the functions quantile and tiedrank of Matlab.

3. The proposed classification method – general description

Let us assume the data set X containing K observations, each char-

acterized by N variables (input attributes). The observations are as-

sociated with the proper destination vector d representing classes to

which the observations belong.

X =

⎡
⎣

x11 · · · x1N

...
. . .

...
xK1 · · · xKN

⎤
⎦, d =

⎡
⎣

d1

...
dK

⎤
⎦ (3)

Consider one testing observation denoted by xt and its proper

class represented by dt ∈ {0, 1}. In further considerations we as-

sume the binary classifiers. Assume M classifiers employed to solve

the classification problem. Our task is to choose the classifier of the

best generalization ability to recognize and classify the testing sam-

ple. The proposed procedure is as following.

First, apply the bootstrap strategy (Efron & Tibshirani, 1993; Fried-

man et al., 2000) to the data set (X, d) of K observations. A bootstrap

set is created by sampling K instances uniformly from the original

data (with replacement). This bootstrap set is split into the learning

samples (XL , dL) containing 75% of data and validation set (XV , dV) of

the remaining 25% samples.

To provide the proportional representation of classes in the sets,

we first separate the samples of both classes. For each class, 75% of

observations form the potential learning set and the remaining 25%

the validation set. Then, we apply the bootstrap strategy for each of

these four groups of data. The bootstrap selection is repeated as many

times as is the number of observations in each subgroup. In the last

step, we fuse the learning subsets of both classes, forming the final

learning set and in the same way we fuse two validation subsets to

form the final validation set. The learning set selected in this way is

used as the learning base for all classifiers included in an ensemble.

The learned classifiers are tested on the validation data set.

In the next step, we check the generalization ability of each

member of an ensemble, paying the greatest attention to the sam-

ples placed in the neighborhood of the testing sample xt. This pro-

cess is done using the validation set (XV , dV). We calculate the Eu-

clidean distance of xt to each sample of the validation set. The
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