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a b s t r a c t 

Cluster analysis is a useful tool used commonly in data analysis. The purpose of cluster analysis is to 

separate data sets into subsets according to their similarities and dissimilarities. In this paper, the fuzzy 

c-means algorithm was adapted for directional data. In the literature, several methods have been used for 

the clustering of directional data. Due to the use of trigonometric functions in these methods, clustering is 

performed by approximate distances. As opposed to other methods, the FCM4DD uses angular difference 

as the similarity measure. Therefore, the proposed algorithm is a more consistent clustering algorithm 

than others. The main benefit of FCM4DD is that the proposed method is effectively a distribution-free 

approach to clustering for directional data. It can be used for N-dimensional data as well as circular data. 

In addition to this, the importance of the proposed method is that it would be applicable for decision 

making process, rule-based expert systems and prediction problems. In this study, some existing clus- 

tering algorithms and the FCM4DD algorithm were applied to various artificial and real data, and their 

results were compared. As a result, these comparisons show the superiority of the FCM4DD algorithm in 

terms of consistency, accuracy and computational time. Fuzzy clustering algorithms for directional data 

(FCM4DD and FCD) were compared according to membership values and the FCM4DD algorithm obtained 

more acceptable results than the FCD algorithm. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the statistical analysis of random sampled data, it is assumed 

that the data came from a random variable. This random variable 

can exist in various measure spaces such as metric, time, color, an- 

gular etc. Univariate data in the angular ( θ ) space is called circu- 

lar data. The directions of the winds; the directions of migrating 

birds or animals ( Chang-Chien, Yang, & Hung, 2010 ); the orienta- 

tion of objects in the plane can be held up as circular data. On 

the other hand, data which does not involve orientation but oc- 

curs in periodic process can be analyzed in the same class. Periodic 

data show the same characteristics within a certain period of time. 

A student’s weekly study schedule and the amount of water con- 

sumed daily by living creatures on a yearly basis can be held up 

as periodic data. Data whose frequency changes periodically can 

be converted into circular data, although generally it is not circular 

data. 

Generally, angular-based data is called directional data. If direc- 

tional data has two variables, it is called spherical data. If direc- 

tional data has more than two variables, it is called hyper-spherical 

data ( Fisher, 1993 ). 
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Circular distribution of the data was first examined by von 

Mises in 1918 ( von Mises, 1918 ). Then, studies on statistical in- 

ference from circular data were made by Watson and Williams 

(1956) . After this study, the interest of many researchers in 

this field increased. Batschelet (1981), Fisher (1993) and Mardia 

and Jupp (20 0 0) are major books on analysis of circular data 

which have applications in many fields such as biology, geology, 

medicine, meteorology, oceanography etc. In addition to these, 

Money, Helms, and Jolliffe (2003) ) investigated circular data for a 

case study involving sudden infant death syndrome (SIDS). Carta, 

Bueno, and Ramirez (2008) studied statistical modeling of direc- 

tional wind speeds. Lee (2010) compiled the methods that have 

been developed the last 50 years. Baayen, Klugkist, and Mechsner 

(2012) proposed a test of order-constrained hypotheses for circu- 

lar data with applications to human movement science. Abraham, 

Molinari, and Servien (2013) studied unsupervised clustering of 

multivariate circular data which consist of the positions of five 

separate X-ray beams on a circle. Chen, Singh, Guo, Fang, and Liu 

(2013) improved a new method to identify flood seasonality and 

partition the flood season into sub-seasons. A study conducted by 

Costa, Koivunen, and Poor (2014) estimated directional probability 

distribution of wavefields observed by sensor arrays. Tasdan and 

Cetin (2014 ) carried out a simulation study on the influence of 

ties on uniform scores test for circular data. Hawkins and Lom- 

bard (2015) proposed an optimal method for segmentation of cir- 
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cular data generated from von Mises distribution. Kitamura et al. 

(2015) proposed a new hybrid method that combined directional 

clustering and advanced nonnegative matrix factorization (NMF). 

They handled the problems in multichannel music signal separa- 

tion. da Silva (2015) proposed a directional clustering approach 

based on mixtures of von Mises-Fisher (vMF) distributions to re- 

duce uncertainty in estimating the orientation of neuronal path- 

ways in diffusion magnetic resonance imaging. Yang, Chang-Chien, 

and Hung (2016) presented an unsupervised clustering algorithm 

for directional data on the unit hypersphere without initialization, 

for which it is not necessary to give the number of clusters a pri- 

ori. 

Clustering analysis is one of the most important issues in the 

data analysis. Clustering is used to separate a data set into a de- 

sired number of clusters. In this separation process, the data points 

in the same cluster are the most similar to each other and the data 

points in the different clusters are the most dissimilar. 

When considered from the statistical point of view, clustering 

methods can generally be divided into two categories: the not 

distribution-free approach and the distribution-free approach. The 

most-used algorithms from the not distribution-free approaches 

are the expectation and maximization (EM) algorithm ( Dempster, 

Laird, & Rubin, 1977; McLachlan & Basford, 1988 ) and the fuzzy 

c-directions (FCD) algorithm ( Yang & Pan, 1997 ). These algorithms 

can be applied to directional data. Chang-Chien, Hung, and Yang 

(2012) adapted the mean shift clustering algorithm, used for nu- 

meric data, for circular data by determining automatically the 

number of clusters. Then, Yang, Chang-Chien, and Kuo (2014) ap- 

plied the mean shift clustering algorithm for circular data to hyper- 

spherical data. 

The most-used algorithms from the distribution-free ap- 

proaches are partitional clustering methods. K-means ( MacQueen, 

1967 ) and fuzzy c-means (FCM) clustering algorithms are the 

most-common partitional clustering algorithms. These algorithms 

are applied to linear data. However, in this study, the FCM clus- 

tering algorithm is modified to apply to directional data. Different 

from the existing studies, the proposed method uses angular differ- 

ence as the similarity measure. In addition, the proposed algorithm 

is a distribution-free approach. 

In Section 2 , classical FCM algorithm is explained. In Section 3 , 

general definitions and similarity measures for directional data are 

described. In Section 3.1 and Section 3.2 , the EM and the FCD 

algorithms for directional data are introduced. In Section 4 , the 

modified FCM algorithm for directional data is given. In Section 5 , 

the EM, the FCD and the FCM4DD algorithms are applied to the 

some numerical data, and their performances are compared. In 

Section 5.1 , the membership values of the FCD and the FCM4DD 

are compared. 

2. Fuzzy c-means clustering (Fcm) algorithm 

The fuzzy c-means clustering (FCM) algorithm was proposed by 

Dunn in 1973 and improved by Bezdek in 1981 ( Höppner, Klawonn, 

Kruse, & Runkler, 20 0 0 ). The FCM algorithm, based on objective 

function, is subject to the principle that each data point belongs 

to more than one cluster with different membership values, rang- 

ing from [0,1]. Additionally, the sum of the membership values for 

each data point must be one. If a data point is in the cluster center, 

its membership value is one: 

Let X = { x 1 , x 2 , . . . , x N } be a sample of N observations in D- 

dimensional Euclidean space ( x i ∈ R 

D ) . Clustering is process which 

separates this data set into C subsets and their cluster centers 

which are { ν1 , ν2 , . . . ν j , . . . , νC } . The desired optimal criterion min- 

imizes the objective function while separating the data set into 

subsets. The algorithm tries to minimize the following objective 

function which is the generalized form of the least-squared errors 

function ( Höppner et al., 20 0 0 ): 

J m 

= 

N ∑ 

i =1 

C ∑ 

j=1 

μm 

i j 

∣∣∣∣x i − ν j 

∣∣∣∣2 
, 1 < m < ∞ (1) 

in which m is the weighting fuzziness parameter and is gener- 

ally chosen as 2. μij is the membership value of the i th data to 

the j th cluster and μij must satisfy the following three conditions 

( Bezdek, 1981 ): 

1. The membership value ranges between zero and one as given 

in Eq. (2) : 

μi j ∈ [ 0 , 1 ] , ∀ i, j (2) 

2. The sum of the membership values for each data point must 

be one as given in Eq. (3) : 

C ∑ 

j=1 

μi j = 1 , ∀ i (3) 

3. The sum of the all membership values in a cluster must be 

smaller than the number of data (N) as given in Eq. (4) : 

0 < 

N ∑ 

i =1 

μi j < N, ∀ N (4) 

The FCM algorithm is a simple method and is the most com- 

mon clustering algorithm in the all fuzzy clustering methods 

( Bezdek, Ehrlich, & Full, 1984 ). The FCM algorithm can be summa- 

rized as follows: 

FCM Algorithm 

Step 1. Fix C ∈ [2, N ), ( m > 0) and ( ɛ > 0). 

Step 2. Give initials randomly μ(0) 
i j 

∼ U( 0 , 1 ) and let t = 1 . 

Step 3. Compute cluster centers ( ν j ) by using Eq. (5) : 

ν j = 

∑ N 
i =1 μ

m 

i j 
x i ∑ N 

i =1 μ
m 

i j 

, ( j = 1 , 2 , . . . , C ) (5) 

Step 4. Update μij with ν j by using Eq. (6) : 

μi j = 

( 

C ∑ 

k =1 

(‖ x i − ν j ‖ 

‖ x i − νk ‖ 

) 2 
m −1 

) −1 

, ( i = 1 , 2 , . . . , N; j = 1 , 2 , . . . , C ) 

(6) 

Step 5. Compute ‖ μ(t) − μ( t −1 ) ‖ . 
IF ‖ μ(t) − μ( t −1 ) ‖ < ε, STOP 

ELSE t = t + 1 and return to Step 3. 

3. Clustering methods for directional data 

Generally, statistical data analysis is used for data on the lin- 

ear axis ( Kaufman & Rousseeuw, 1990 ). However, classical statisti- 

cal methods used for these data cannot be applied inherently to 

directional data. This is because; directional data have a modular 

structure. If directional data are defined in the interval [ −π, π) , 

they are continuous between the points ( π ) and ( −π) ; if direc- 

tional data are defined in the interval [0, 2 π ), they are continu- 

ous between the points (2 π ) and (0). In terms of numerical values, 

classical methods cannot be used, when the data is discontinuous 

within these boundaries. The best example of this is demonstrated 

by the following: distance between the angles 359 ° and 1 ° is 2 °, 
but the numerical subtraction of these angles is 358 °. Likewise, it 

might firstly appear that the mean of these angles is 0 °, whereas 

it is 180 ° in reality. 

Clustering algorithms use the distances between data as the 

similarity measure. There are angularly two distances between two 
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