
Expert Systems With Applications 43 (2016) 9–14

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An evolutionary voting for k-nearest neighbours

Daniel Mateos-García∗, Jorge García-Gutiérrez, José C. Riquelme-Santos

Department of Computer Science, Avda. Reina Mercedes S/N, Seville 41012 , Spain

a r t i c l e i n f o

Keywords:

Evolutionary computation

Nearest-neigbour

Weighted voting

a b s t r a c t

This work presents an evolutionary approach to modify the voting system of the k-nearest neighbours (kNN)

rule we called EvoNN. Our approach results in a real-valued vector which provides the optimal relative con-

tribution of the k-nearest neighbours. We compare two possible versions of our algorithm. One of them

(EvoNN1) introduces a constraint on the resulted real-valued vector where the greater value is assigned to

the nearest neighbour. The second version (EvoNN2) does not include any particular constraint on the order

of the weights. We compare both versions with classical kNN and 4 other weighted variants of the kNN on

48 datasets of the UCI repository. Results show that EvoNN1 outperforms EvoNN2 and statistically obtains

better results than the rest of the compared methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Weighting in machine learning is a common technique for empha-

sizing some characteristics of data to improve the resulting models.

For example, weighting has been used to outline the importance of

some particular instances (Blachnik & Duch, 2011) or features (Zhi,

Fan, & Zhao, 2014), or rank a set of techniques in the context of en-

sembles (Berikov, 2014). In a broad sense, Artificial Neural Networks

(ANNs) and Support Vector Machines (SVMs) can be also seen as ex-

amples of using weights in learning models but the k-nearest neigh-

bours (kNN) has been the most common technique to benefit from

weights (Mateos-García, García-Gutiérrez, & Riquelme-Santos, 2012).

kNN and its variants have been widely used in the literature to

solve real problems. Rodger (2014) used a hybrid model to predict

the demand of natural gas. The system was implemented integrating

regression, fuzzy logic, nearest neighbour and neural networks, and

considering several variables such as the price, operating expenses,

cost to drill new wells, etc. If we focus on biological data, Park and

Kim (2015) selected significant genes from microarrays by using a

nearest-neighbour-based ensemble of classifiers. On the other hand,

Park, Park, Jung, and Lee (2015) tackled the problem of designing rec-

ommender systems. For this purpose the authors presented Reversed

CF (RCF), a fast item-based collaborative filtering algorithm which

utilizes a k-nearest neighbour graph.

∗ Correspoding author. Tel.: +34954555964, Fax.: +34954557139.

E-mail addresses: mateosg@us.es (D. Mateos-García), jorgarcia@us.es (J. García-

Gutiérrez), riquelme@us.es (J.C. Riquelme-Santos).

URL: http://www.lsi.us.es (D. Mateos-García)

The main goal of a weighting system lies in the optimization (com-

monly by metaheuristics) of a set of weights in the training step to ob-

tain the highest accuracy but trying not to overfit the resulting model.

If we focus on kNN weighting methods, many proposals weight-

ing features or instances can be found. In Raymer, Punch, Goodman,

Kuhn, and Jain (2000) a weighting method to obtain an optimal set

of features was provided. The set of features was selected by means

of a kNN-based genetic algorithm using a bit vector to indicate if a

feature was in the selection or not. In a later work, the same authors

presented a hybrid evolutionary algorithm using a Bayesian discrimi-

nant function (Raymer, Doom, Kuhn, & Punch, 2003) and trying to iso-

late characteristics belonging to large datasets of biomedical origin.

Moreover, Paredes and Vidal (2006) used different similarity func-

tions to improve the behaviour of the kNN. In a first approximation,

they considered a weight by feature and instance on training data re-

sulting in a non-viable number of parameters in the learning process.

Then, the authors proposed three types of reduction: a weight by

class and feature (label dependency), a weight by prototype (proto-

type dependency) and a combination of the previous ones. The opti-

mization process was carried out by descendant gradient. In the same

line, Tahir, Bouridane, and Kurugollu (2007) showed an approach that

was able to both select and weight features simultaneously by using

tabu search. Furthermore, Mohemmed and Zhang (2008) presented a

nearest-centroid-based classifier. This method calculated prototyp-

ical instances by considering arithmetic average from the training

data. To classify an instance, the method calculated the distance to

every prototype and then selected the nearest one. The optimiza-

tion of the best centroids that minimized the classification error was

carried out through particle swarm. Fernandez and Isasi (2008) also

proposed a weighting system by using a prototype-based classifier.

After a data normalization that was based on the position of the

http://dx.doi.org/10.1016/j.eswa.2015.08.017

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.08.017&domain=pdf
mailto:mateosg@us.es
mailto:jorgarcia@us.es
mailto:riquelme@us.es
http://www.lsi.us.es
http://dx.doi.org/10.1016/j.eswa.2015.08.017


10 D. Mateos-García et al. / Expert Systems With Applications 43 (2016) 9–14

instances with respect to regions, the weights were iteratively calcu-

lated. More recently, AlSukker, Khushaba, and Al-Ani (2010) used dif-

ferential evolution to find weights for different aspects of data. They

described four approaches: feature weighting, neighbour weighting,

class weighting and mixed weighting (features and classes), with the

latter being the one providing the best results.

Weighting has also been applied to the vote system of the kNN.

Thus, the distance-weighted k-nearest neighbour rule (WKNN) pro-

posed by Dudani (1976) has been known for long. WKNN weights the

votes of the k nearest neighbours (wi) according to Eq. (1) where di

is the distance of the ith nearest neighbour (being d1 the distance

of the nearest) regarding an instance to be classified. A similar ver-

sion using a uniform weighting (UWKNN) has also been proposed

where a weight is inversely proportional to the position reach among

the neighbours (i.e., wu
i

= 1/i). Recently, both techniques have been

explored working together as a new classifier called Dual-Weighted

kNN (DWKNN) showing promising results where each weight was

calculated according to Eq. (2) (Gou, Xiong, & Kuang, 2011). A later

work of Gou, Du, Zhang, and Xiong (2012) provided another version

of DWKNN where the calculation of the weights were different ac-

cording to Eq. (3).

ww
i =

⎧⎨
⎩

(dk − di)

(dk − d1)
if di �= d1

1 if di = d1

(1)

wdw1
i = ww

i ∗ wu
i (2)

wdw2
i =

⎧⎨
⎩

(dk − di)

(dk − d1)
∗ (dk + d1)

(dk + di)
if di �= d1

1 if di = d1

(3)

Although all the previous approaches provided improvements re-

garding the classical kNN performance, they have not explored the

possible better suitability of evolutionary computation for the op-

timization of the neighbours weights. Thus, we propose an evolu-

tionary method to improve the kNN rule by altering the vote system

knowledge obtained in the training phase. We also explore the use

of constraints in learning weights with two different versions of our

approach and we study their reliability compared with classical kNN

and other 4 weighted variants on UCI datasets (Lichman, 2013). Fi-

nally, results are statistically validated to reinforce the final conclu-

sions.

The rest of the paper is organized as follows. Section 2 presents

the elements of the two versions of the evolutionary algorithm de-

signed to weight the vote system of the kNN. The results and several

statistical tests are specified in Section 3. Finally, Section 4 presents

the main findings and future work.

2. Method

In this section, two variants of our voting optimization system

called Evolutionary Voting of Nearest Neighbours (EvoNN) are de-

scribed.

2.1. Purpose and functionality

The aim of our work was to find a set of weights to modify the

influence of every nearest neighbour when they voted to assign a la-

bel to an unlabelled instance. Moreover, our approach also provided

a measurement about the influence of the proximity of neighbours

by means of the optimized weights. Thus, the evolutionary process

provides the optimal weights that have been found to improve the

classification accuracy of the domain under study.

To formalize our approach we assume that the set of classes (or

labels) L is represented by the natural numbers from 1 to b, with

b being the number of labels. Thus, let D = {(e, l) | e ∈ R
f and l ∈

L = {1, 2, . . ., b}} be the dataset under study with f being the num-

ber of features and b the number of labels. Let label be a function

that assigns to every element e the real class to which it belongs

to. Let us suppose that D is divided in the sets TR and TS, each of

them being the training set and the testing set, respectively, such that

D = TR ∪ T S and TR ∩ T S = ∅. In the training step the classification er-

ror is minimized with participation only by instances from TR. This

classification error is calculated as follows. For each x ∈ TR we com-

pute its k nearest neighbours according to a distance function d. Let

xi with i = 1. . .k be the neighbours to x but ranked by distance, i.e.:

d(x, x1) ≤ d(x, x2). . . ≤ d(x, xk) and ∀y ∈ TR with y �= xi, d(x, xk) < d(x,

y). According to the standard kNN rule, the prediction of the label of

x from the labels of its neighbours can be formalized:

predLabel(x) = arg max
l∈{1..b}

k∑
i=1

δ(l, label(xi)) (4)

where

δ(l, label(xi)) =
{

1 if label(xi) = l

0 otherwise
(5)

If instead of a unitary vote, we consider that the ith neighbour

contributes with the weight wi ∈ R, the function (4) is redefined:

predLabel(x, w) = arg max
l∈{1..b}

k∑
i=1

ωiδ(l, label(xi)) (6)

The function to minimize is the sum of all prediction errors of ev-

ery instance x from TR. Thus, if we define the error function as

error(x, w) =
{

1 if predLabel(x, w) �= label(x)

0 otherwise
(7)

then the function to optimize is:

min
w∈Rk

∑
x∈TR

error(x, w) (8)

With regard to the two versions of the evolutionary algorithm,

they were called EvoNN1 and EvoNN2. For EvoNN1, the nearest

neighbours (those with lowest distances regarding the unlabelled in-

stance) were “ heavier” and therefore, their influence (weight) had to

be greater. In EvoNN2 weights had no constraints. Regarding the de-

sign of the evolutionary algorithm, it is easy to suppose that EvoNN1

and EvoNN2 were similar except on the encoding, crossover and mu-

tation.

2.2. Voting optimization

This subsection details the search algorithm to calculate the op-

timum contribution of k nearest neighbours carried out by two ver-

sions of an evolutionary algorithm . It is then necessary to define their

main characteristics i.e., individual encoding, genetic operators, fit-

ness function and generational replacement policy.

2.2.1. Individual encoding

In EvoNN1 and EvoNN2, an individual was a real-valued vector

with size k symbolizing the relative contribution of the k-nearest

neighbours in the voting system of the kNN rule. Position 1 in the

vector was associated with the nearest neighbour in distance and po-

sition k with the furthest. Moreover, a constraint was established in

EvoNN1 to assure that the closest neighbours were more important

i.e., ω1 ≥ ω2 ≥ . . .ωk.

Regarding the initial population, both designs integrated individ-

uals with k random values between 0 and 1 (ordered in EvoNN1). To

include individuals representing classic kNN, initial population also

included several vectors with the first k values set to 1 and the re-

maining set to 0 in the initial population e.g., (1.0, 0.0, . . ., 0.0) for



Download English Version:

https://daneshyari.com/en/article/382632

Download Persian Version:

https://daneshyari.com/article/382632

Daneshyari.com

https://daneshyari.com/en/article/382632
https://daneshyari.com/article/382632
https://daneshyari.com

