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a b s t r a c t 

Fault detection in industrial processes is a field of application that has gaining considerable attention 

in the past few years, resulting in a large variety of techniques and methodologies designed to solve 

that problem. However, many of the approaches presented in literature require relevant amounts of prior 

knowledge about the process, such as mathematical models, data distribution and pre-defined parame- 

ters. In this paper, we propose the application of TEDA – Typicality and Eccentricity Data Analytics – , 

a fully autonomous algorithm, to the problem of fault detection in industrial processes. In order to per- 

form fault detection, TEDA analyzes the density of each read data sample, which is calculated based on 

the distance between that sample and all the others read so far. TEDA is an online algorithm that learns 

autonomously and does not require any previous knowledge about the process nor any user-defined pa- 

rameters. Moreover, it requires minimum computational effort, enabling its use for real-time applications. 

The efficiency of the proposed approach is demonstrated with two different real world industrial plant 

data streams that provide “normal” and “faulty” data. The results shown in this paper are very encourag- 

ing when compared with traditional fault detection approaches. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, industries from a variety of production sectors in- 

creasingly seek to meet the market requirements, such as produc- 

tion increase, continuity and reliability of the processes, in addi- 

tion to safety and environmental restrictions. In order to cope with 

these challenges, industries have been investing more and more 

in automation of the production processes, increasing the general 

complexity of the systems. Thus, process maintaining becomes a 

complex task due to the large number of equipment and variables 

that need to be monitored. 

Therefore, there is a growing demand for robust and reliable 

industrial control and monitoring systems. The industrial process 

should be able to perform a specified function, under determined 
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conditions, in a given period of time, while remaining safe for peo- 

ple, equipment and the environment ( Isermann, 2006 ). Moreover, 

these systems should be efficient in the sense of being able to han- 

dle large amounts of variables and data provided by the equipment 

of the plant. 

One of the approaches for tackling both problems is to increase 

quality, safety and robustness of the sensors, actuators and con- 

trollers, in addition to the structure of the plant itself. However, 

over time, the industrial equipment are likely to show a number 

of signs of degradation, such as exhaustion, dirt, corrosion, cracks, 

damage caused by operators, among others. The appearance of 

such signs turns the plant susceptible to fault occurrences during 

its operation. 

A fault consists of an unpermitted deviation of at least one 

characteristic property or variable in a system from its acceptable, 

usual or standard condition ( Isermann, 1997 ). In an industrial pro- 

cess, a fault can be defined as an unexpected change on the func- 

tioning of one or more process components that can lead it to a 

critical situation. Sometimes, a fault may cause a number of prob- 

lems, such as unexpected stoppages, production losses, reduction 
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Fig. 1. FDD system scheme. 

of equipment lifespan, or even accidents with severe consequences 

to the environment and human life ( Venkatasubramanian, 2003 ). 

Very often, a fault-free process is not feasible. Thus, the use of a 

fault detection and diagnosis (FDD) system becomes crucial ( Ding, 

2008 ). FDD systems usually are responsible for the increase of pro- 

cess availability, reliability and safety, in addition to cost reduction 

and more efficient maintaining. A FDD system is often integrated 

to the traditional supervision and control systems, as shown in 

Fig. 1 . 

The FDD systems work by monitoring process variables and an- 

alyzing their behaviors. Therefore, they should be able to deter- 

mine the occurrence of a fault – fault detection – , its location and 

cause – fault diagnosis – , by analyzing process inputs/outputs and 

sending information regarding the fault to the supervisory system. 

Therewith, the operator is able to decide how and when to act in 

order to avoid a critical state of the process. With this strategy, it 

is possible to avoid unnecessary stoppages and accidents. 

High demands for monitoring and fault detection in indus- 

trial systems resulted in research and development of many FDD 

techniques in the last few decades using different data ana- 

lytics methods. These methods are often classified as model- 

based and process history-based ( Katipamula and Brambley, 2005 ; 

Venkatasubramanian, Rengaswamy, Kavuri, (2003) . 

Model-based methods use the concept of residual analysis. In 

this type of approach, the residual error, which consist of the dif- 

ference between a value measured on the output and a value esti- 

mated from a previously defined quantitative or qualitative model, 

is calculated and considerable difference between the estimated 

and measured values might indicate the presence of a fault. 

On the other hand, process history-based methods do not re- 

quired pre-defined models of the system. These methods, also 

known as data-driven, analyze the temporal evolution of data from 

the system in order to detect anomalies in its behavior. 

Many different approaches have been used to tackle FDD prob- 

lems, including fuzzy systems ( Mendonça, Sousa, & Sá da Costa, 

2009; Oblak, Skrjanc, & Blazic, 2007; Yang, Xia, & Liu, 2011 ), state 

observers ( Chen & Saif, 2007; Li & Yang, 2012; Sobhani & Posh- 

tan, 2011; Zhou, Liu, & Dexter, 2014 ), neural networks ( Leite, Hell 

Jr, & Gomide, 2009; Mrugalski & Korbicz, 2007; Yuan, Lu, Ma, & 

han Chen, 2015; Zhou, Pang, Lewis, & Zhong, 2011 ), principal com- 

ponent analysis ( Cui, Li, & Wang, 2008 ), support vector machines 

( Zeng et al., 2013 ), parity equations ( Zakharov, Tikkala, & Jms- 

Jounela, 2013 ), analytical redundancy ( Anwar & Chen, 2007; Halder 

& Sarkar, 2007; Serdio, Lughofer, Pichler, Buchegger, & Efendic, 

2014; Serdio et al., 2014; Xu & Tseng, 2007 ) and immune system- 

based methods ( Laurentys, Palhares, & Caminhas, 2010; Laurentys, 

Ronacher, Palhares, & Caminhas, 2010 ). One of the main disad- 

vantages of most of these approaches is that they require a pre- 

defined model (quantitative or qualitative) of the system, mathe- 

matically defined or estimated by offline training. 

However, most of the mentioned approaches are limited in the 

sense that they require some kind of previous knowledge about the 

characteristics of the process. Therefore, the availability of math- 

ematical, physical or behavioral models or the non-intuitive defi- 

nition of parameters and thresholds are required. Moreover, large 

databases and extensive training are often mandatory. 

Recently, methods for outlier detection have been applied to 

different problems, including fault detection in industrial problems 

( Chandola, Banerjee, & Kumar, 2007; Hodge & Austin, 2004; Singh 

& Upadhyaya, 2012 ). An outlier consists of an element from a data 

set that is significantly distinct from the other elements. Consid- 

ering a signal obtained from an industrial plant, an outlier might 

indicate an anomaly or fault in the process. 

Generally, the data in an industrial process is obtained contin- 

uously, in real time and, thus, outlier detection methods must be 

able to handle the data in the form of data streams. Therefore, each 

sample analyzed has a temporal aspect and is only available at the 

instant of the acquisition. In this context, an outlier is detected 

from the observation of a sequence of data samples analyzed over 

time. 

Accordingly, other important aspects should be considering 

when choosing an outlier detection method, such as computational 

effort when handling high dimensional streaming data. Hence, in- 

formation about past data samples must be stored and analyzed 

without compromising memory and execution time. 

Many authors address such problem with time series analysis 

Hu, Dong, (2015) and outlier detection methods, thoroughly dis- 

cussed in Chandola et al. (2007) and Hodge and Austin (2004) , 

which include Statistical Modeling ( Ma, Hu, & Shi, 2013; Yan, Chen, 

Yao, & Huang, 2016 ), Neural Networks ( King et al., 2002; Li, Pont, 

& Jones, 2002 ), Spectral Decomposition ( Fujimaki, Yairi, & Machida, 

2005 ) and Rule-based Systems ( Ramezani & Memariani, 2011 ). 

In this work, we deal solely with the fault detection stage, 

omitting, then, the diagnosis stage. This is an application of the 

anomaly detection field of study, consisting of a “one-class” clas- 

sification problem, by deciding whether a data sample belongs to 

the “normal” class or not (fault). 

In order to solve this problem, we will make use of a recently 

proposed approach to anomaly detection within a data stream. 

Typicality and Eccentricity Data Analytics (TEDA) is based on the 

spatial proximity among the data samples and has been suc- 

cessfully applied to anomaly detection ( Bezerra, Costa, Guedes, & 

Angelov, 2015 ), clustering, classification, regression, among other 

problems ( Kangin & Angelov, 2015 ). 

This paper presents a practical application of TEDA algorithm 

to two different real world industrial fault detection problems. The 

first application uses the well known DAMADICS fault detection 

benchmark, that provides real data (not simulated) from the op- 

eration of a sugar factory plant. The second application consists of 

a laboratory pilot plant for process control, equipped with real in- 

dustrial instruments. 



Download English Version:

https://daneshyari.com/en/article/382981

Download Persian Version:

https://daneshyari.com/article/382981

Daneshyari.com

https://daneshyari.com/en/article/382981
https://daneshyari.com/article/382981
https://daneshyari.com

