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a b s t r a c t 

The costs of decommissioning high-voltage equipment due to insulation breakdown are associated to the 

substitution of the asset and to the interruption of service. They can reach millions of dollars in new 

equipment purchases, fines and civil lawsuits, aggravated by the negative perception of the grid utility. 

Thus, condition based maintenance techniques are widely applied to have information about the status of 

the machine or power cable readily available. Partial discharge (PD) measurements are an important tool 

in the diagnosis of power systems equipment. The presence of PD can accelerate the local degradation of 

insulation systems and generate premature failures. Conventionally, PD classification is carried out using 

the phase resolved partial discharge (PRPD) pattern of pulses. The PRPD is a two dimensional representa- 

tion of pulses that enables visual inspection but lacks discriminative power in common scenarios found 

in industrial environments, such as many simultaneous PD sources and low magnitude events that can 

be hidden below noise. The literature shows several works that complement PRPD with machine learning 

detectors (neural networks and support vector machines) and with more sophisticated signal represen- 

tations, like statistics captured in several modalities, wavelets and other transforms, etc. These methods 

improve the classification accuracy but obscure the interpretation of the results. In this paper, the use 

of a support vector machine (SVM) operating on the power spectrum density of signals is proposed to 

identify different pulses what could be used in an online tool in the maintenance decision-making of the 

utility. Particularly, the approach is based on an SVM endowed with a special kernel that operates in the 

frequency domain. The SVM is previously trained with pulses of different PD types (internal, surface and 

corona) and noise that are obtained with several test objects in the laboratory. The experimental results 

demonstrate that this technique is highly effective in identifying PD for cases where several sources are 

active or when the noise level is high. Thus, the early identification of critical events with this approach 

during normal operation of the equipment will help in the decision of decommissioning the asset with 

reduced costs and low impact to the grid reliability. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Electrical insulation is reported to be the weakest point of 

electrical assets in high voltage engineering ( Kuffel, Zaengl, & 

Kuffel, 20 0 0 ). The daily operation of power cables and electri- 

cal machines leads to high electrical, thermal and mechanical 

stresses which tend to degrade the insulation systems until a com- 

plete short-circuit between metallic electrodes takes place. In the 
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previous stages before total breakdown, it is usual to observe low 

energy ionisation processes that occur within small volumes where 

highly divergent electrical fields are present, ( Okabe, Ueta, Wada, 

& Okubo, 2010; Stone & Warren, 2004; Wang, Cavallini, Monta- 

nari, & Testa, 2012 ). These processes, called partial discharges (PD) 

are a consequence of different degradation mechanisms and may 

be useful for the diagnosis of electrical equipment at high rated 

voltages. However, not all PD may be equally harmful for dielec- 

tric materials, and their particular source needs to be identified if 

a proper analysis is intended to be made, ( Stone & Warren, 2004 ). 

Under this assumption, intense work has been made to identify PD 

sources from the discharge magnitude represented superimposed 

to the applied voltage, ( CIGRE, 1969; IEC, 2012 ). These so-called 
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phase resolved partial discharge (PRPD) patterns are very useful to 

characterise the status of electrical machines and power cables. 

The interpretation of the results is sometimes complex if sev- 

eral PD sources are simultaneously active, ( Venkatesh & Gopal, 

2011b ) or if the measurements are made in sites where low sig- 

nal to noise ratio (SNR) is present, which is especially noticeable 

in on-line PD detection, ( IEC, 2012; Montanari & Cavallini, 2013 ). 

In order to face these problems, high bandwidth detectors such 

as high frequency resistors, high frequency current transformers 

(HFCT) and inductive loops have been used following the guide- 

lines of the standards measuring PRPD patterns ( IEC, 20 0 0, 2012 ) 

though, additionally, they can detect the discharge waveform for 

further signal processing, ( Martínez-Tarifa, Robles, Rojas-Moreno, & 

Sanz-Feito, 2010; Montanari & Cavallini, 2013 ). 

Thus, PD pulse waveform analysis can be used in the recogni- 

tion of the sources of discharges and in the filtering of noise. Sev- 

eral techniques, such as time-frequency (T-F) maps, ( Allahbakhshi 

& Akbari, 2011; Cavallini, Montanari, Contin, & Pulletti, 2003 ), 

power ratio (PR) maps ( Ardila-Rey, Martínez-Tarifa, Robles, & 

Rojas-Moreno, 2013 ) and three-dimensions maps ( Hao et al., 2011 ) 

permit to group pulses in clusters based on their source. A wider 

approach consists in processing these pulses through neural net- 

works (NN) and machine learning techniques, ( Chen, Gu, & Wang, 

2012; Kuo, 2010; Venkatesh & Gopal, 2011a, 2011b ). In particular, 

neural networks have been used in Majidi and Oskuoee (2015) to 

classify PD based on their apparent charge and phase referred to 

the voltage grid using 18 test objects to gather the events and test 

the classification. 

Perhaps the closest work in the literature to our approach is 

( Hao, Lewin, & Swingler, 2008 ), in which the support vector ma- 

chines (SVMs) are applied to a particular industrial environment 

where partial discharge signals are generated with a commer- 

cial calibrator. This work concluded that the SVM applied to the 

wavelet coefficients achieve almost a perfect classification, while 

the spectral response, implemented as the Fast Fourier Transform 

(FFT) of the pulses, yielded a very poor generalisation capability. 

Another interesting technique based on the study of the wavelet 

transform using SVMs was presented in de Oliveira Mota, da Rocha, 

de Moura Salles, and Vasconcelos (2011) though it has only been 

tested to separate noise from partial discharges and not to sepa- 

rate different types of discharges. SVMs have also been applied to 

PRPD patterns which can be used as inputs in the training process; 

( Hao & Lewin, 2010 ) applied a wavelet transform to reduce the in- 

formation of the pulses to two parameters, the phase referred to 

the grid voltage and the average charge amplitude. Alternatively, 

the information of the type of discharge is determined using an 

SVM with an RBF kernel trained with individual PRPD patterns. 

The tests were also done individually and combined manually to 

have several simultaneous PD sources. They obtained good results 

in the identification of PD sources though, in a practical application 

of the method, the identification through these patterns needs that 

the testing data set characterises just one PD source which, in turn, 

requires a reliable previous pulse source separation. 

In Wang et al. (2015) the authors use particle swarm optimi- 

sation (PSO) to fit the parameter σ and the penalty factor of an 

SVM with RBF kernel. Then, a group of statistics containing infor- 

mation about the shape of PRPD patterns are used to train the 

SVM and classify the events. In Hunter, Lewin, Hao, Walton, and 

Michel (2013) a partial discharge is described by 20 features in- 

cluding characteristics in the time domain such as peak amplitude, 

phase angle, rise and fall times and the definite integral of the dis- 

charge; statistical parameters of the pulses such as mean, standard 

deviation, skewness, kurtosis; peak frequency in the FFT and en- 

ergy ratios from a 9 levels Wavelet decomposition. Then, the SVM 

is applied to classify signals from four different defective power 

cable samples. 

In any approach, independently of the applied technique or the 

parameters used, the training of SVMs or NNs require a wide and 

reliable data base of already identified PD sources chiefly through 

their PRPD patterns which could be very difficult to obtain in 

high-voltage equipment. This is a common drawback that is al- 

ways present in the identification of partial discharges with ma- 

chine learning. 

In summary, the current trend in PD classification involves the 

use of combinations of sophisticated features extracted from differ- 

ent modalities (wavelets, high order statistics, measurements from 

signals in the time domain, PRPD patterns, etc) as input data to 

neural networks or SVM classifiers with RBF kernels ( Raymond, 

Illias, Bakar, & Mokhlis, 2015 ). In general, these approaches achieve 

very good classification rates in discriminating PD from noise as 

well as in detecting PD sources, but in exchange of obscuring the 

interpretation of the results. The neural networks and the RBF ker- 

nel melt all the input features in a more or less complex classifica- 

tion function, which makes practically impossible to interpret the 

results of the classification in the sense that one cannot analyse 

the contribution nor the relevance of each individual input feature 

to the classification. 

The approach presented henceforth is more straightforward 

than the methods used in the reviewed bibliography and the fol- 

lowing features can be considered as original contributions and in- 

herent strengths of the method: 

• The algorithm is based on the use of the Power Spectrum Den- 

sity (PSD) instead of a collection of statistics to capture the 

characteristics of the partial discharge type. During the process, 

the pulse is not modified by filtering so there is no loss of in- 

formation and we can easily accommodate theory and results 

in the discussion or explanation of the classification. 
• The great advantage of SVMs over NNs is the automatic deter- 

mination of the architecture of the classifier. NNs need an a pri- 

ori determination of the number of layers and number of neu- 

rons per layer using domain knowledge. SVMs can be regarded 

as a single hidden layer RBF NN in which each Support Vector 

becomes a neuron. The SVM global optimisation automatically 

determines the number of support vectors, whilst NNs need a 

much more intense training to find the architecture of the clas- 

sifier and learn its parameters; these optimisations are greedy 

and prone to local minima ( Bishop, 2006 ). 
• The kernel selected for the SVMs in this paper (termed KL- 

kernel, see Section 2.3 ) operates on the frequency domain and 

posses a physical meaning. The KL-kernel measures the over- 

lapping of the PSDs shapes and the shape of the PSD is in- 

fluenced by the source of the PD. In this scenario, the most 

significant qualitative advantage of the KL-kernel over the ubiq- 

uitous RBF kernel is that the former distinguishes frequencies 

with high energy from frequencies with low energy in the con- 

struction of the similarity. In more detail, first notice that the 

input to both kernels are the normalised PSDs of the pulses. 

The KL-kernel computes the similarity between two pulses by 

multiplying their normalised energies in each frequency; this 

results in two pulses being similar when their frequencies with 

higher energy level coincide. However, the RBF kernel bases the 

similarity measure on the difference of the normalised energies 

in each frequency; this biases the total similarity towards fre- 

quencies with low energy, where the differences between the 

two PSDs will be smaller. Since the physical meaning of the PSD 

is that the energy distribution is related to the nature of the 

PD (or the noise signal), the KL-kernel is more suited for our 

purposes since captures similarities in the frequencies of high 

energy. This way there is a theoretical link between the classi- 

fications and the nature of the pulses as the former are based 

on computing similarities among the spectral densities of the 
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