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a b s t r a c t

Reinforcement learning is not well scalable in state spaces with high-dimensions. The hierarchical re-

inforcement learning resolves this problem by task decomposition. Task decomposition is done by ex-

tracting bottlenecks, which is in turn another challenging issue, especially in terms of time and memory

complexity and the need to the prior knowledge of the environment. To alleviate these issues, a new

approach is proposed toward the problem of extracting bottlenecks. Holonic concept clustering and at-

tentional functions are proposed to extract bottleneck states. To this end, states are organized based on

the effects of actions by means of a holonic clustering to extract high-level concepts. High-level concepts

are used as cues for controlling attention. The proposed mechanism has a better time complexity and

fewer requirements to the designer’s help. The experimental results showed a considerable improvement

in the precision of bottleneck detection and agent’s performance for traditional benchmarks comparing

to other similar methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a general approach to maximize

reward through trial and error where reward signals may be with

delay (Kaelbling et al., 1996; Sutton & Barto, 1998). This function-

ality enables RL to be considered as a powerful approach to han-

dling complex non-linear control tasks in fields such as economics,

robotics, and control. These fields of research typically confront

with large state space and RL cannot be well scaled up in such en-

vironments, hence the curse of dimensionality (Barto & Mahade-

van, 2003). Decomposing learning task into several sub-problems

is an approach to address the challenge of scaling up RL in high-

dimensional state space. This division and conquer strategy in RL

is used in the form of the hierarchical control and the corre-

sponding learning algorithms, i.e. hierarchical reinforcement learn-

ing (HRL). HRL approaches such as options (Sutton et al., 1999),

MAXQ (Dietterich, 2000) and HAMs (Parr, 1998) increase the speed

of learning in RL mainly by utilizing temporal abstraction (also

called temporally extended actions). Semi-Markov decision pro-

cesses (SMDPs) as extended framework of Markov decision process

(MDP) can deal with temporally extended actions (in Section 1.1

more details are given).

∗ Corresponding author.

E-mail addresses: beghazanfari@gmail.com (B. Ghazanfari), mozayani@iust.ac.ir

(N. Mozayani).

Creating temporally extended actions or decomposition of a

learning task is obtained by extracting key states in the state

space context with some kinds of HRL approaches. These states

are categorized into sub-goals and bottleneck states depending on

whether they are relevant to the current task (Chiu & Soo, 2011;

Mcgovern, 2002; Şimşek & Barto, 2004; Stolle 2004). Extracting

these key states is a challenging issue for an RL agent in an au-

tomatic manner. Several methods have been proposed to allevi-

ate this challenge. Most of which are generally based on graph

partitioning (Chiu & Soo, 2010; Kheradmandian & Rahmati, 2009;

Mannor et al., 2004; Menache et al., 2002; Şimşek & Barto, 2009;

Şimşek et al., 2005) and path processing mechanisms (Digney,

1998; Mcgovern, 2002; Şimşek & Barto, 2004, 2009; Stolle, 2004;

Thrun & Schwartz, 1995). They differentiate the key states from

other states by clustering or classification mechanisms based on

their own criteria.

The proposed method looks for bottlenecks indirectly by seek-

ing frames of doorways, cues, as the special kind of concepts,

which make bottlenecks. If probable frames of doorways are close

to each other action spaces, the states among them will be con-

sidered as bottleneck states. In fact, they are considered as cues

for the possibility of being a bottleneck. To achieve this, the re-

searchers have proposed holonic concept clustering (HCC) which

is like a hierarchical multi-resolution structure and attentional

functions (AF). HCC works based on the effects of actions and

AF detects bottleneck states on the basis of HCC output. These

are the key and distinguishing features of the proposed method
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as compared with other works cited in the literature. To have

comprehensive and formal discussions, four criteria have been in-

troduced to evaluate proposed methods in the literature.

In the following, a rough explanation is presented about MDP

as a typical framework of RL and about SMDP as an extended ver-

sion of MDP for HRL. Afterward, the definitions and explanation

are offered for sub-goals, bottlenecks, and the differences between

them.

1.1. MDPs and SMDPs

A conventional framework used for modeling discrete time RL

is (MDPs) M: < S, A, P, R > . S = {s1, . . . , sn} is a finite set of states

and A = {a1, . . . , ap} is a finite set of primary actions; P: S∗A∗S →
[0, 1] is a one-step probabilistic state transition and R : S ∗ A → R

is a reward function. The agent aim is to find the Markov pol-

icy (the mapping from states to actions is called a policy) π :

S∗A → [0, 1] that maximizes its accumulating discounted reward

(R = ∑ ∞
i=0 γ ri, γ ∈ [0, 1] where γ is a discounted rate) from each

of the states (Sutton & Barto, 1998; Sutton et al., 1999).

In the proposed method, the option framework (as shown by

(Sutton et al., 1999)) is used to define temporally extended actions.

An option is a triplet < I, π , β > , where I is initiation set I ⊆ S,

i.e. all the states that the option can be initiated from; π : S∗A →
[0, 1] is a policy, i.e. for each state in option’s initiation set there is

a mapping to a sequence of actions; and β : S+ → [0, 1] is a termi-

nation condition which indicates with what probability each op-

tion in any state must be terminated. Initiation set and terminal

condition indicate the states, which an option can be applied on.

Options are close-loop policies and each of them has its policy and

value function as they can react to the environmental changes.

1.2. Sub-goals and bottlenecks

Options (Sutton et al., 1999) as an approach of HRL meth-

ods improves the agent efficiency in learning and transferring

knowledge, especially in complex domains. This improvement is

resulted from extending primary actions to temporally extended

actions. Creating temporally extended actions is generally based

on extracting sub-goals or bottlenecks because sub-goal/bottleneck

states have the ability to decompose the learning task. Using sub-

goals/bottlenecks to form options is not limited to grid world prob-

lems or navigation tasks (Mcgovern, 2002). Extracting these states

always has been a challenging issue as they must be extracted ac-

curately and preferably in an automatic manner.

Sub-goals are the states that should provide an easy access or

high reinforcement gradients. They must also be visited frequently.

A category of methods which extracts sub-goals is known as a

set of skill-based methods, such as Thrun and Schwartz (1995),

that are based on computing commonalities among occurring sub-

policies from the solutions of the related tasks for each of the

states. Indeed, the effectiveness of these methods for solving a new

task is highly related to previously learned tasks and their reward

functions.

Bottlenecks are the states, which provide an easy access to the

neighboring regions regardless of whether they are on the success-

ful paths or not. According to Mannor (2004) and Menache et al.

(2002), the bottleneck is: “a small set of states which are placed

between two dense regions of state space in which transition from

one region to the other have a low probability”. Bottlenecks are

defined as independent of the reward function; therefore they can

be used in a variety of tasks, like cases in which the environ-

ment has a same state transition matrix but different reward func-

tion (Şimşek et al., 2005). They are typically extracted by methods

based on a state transition graph (Chiu & Soo, 2010; Kheradman-

dian & Rahmati, 2009; Mannor et al., 2004; Menacheet al., 2002;

Şimşek & Barto, 2009; Şimşek et al., 2005).

1.2.1. Topology bottlenecks and value bottlenecks

Bottleneck states and approaches which extract them can

be divided into two groups: topology-based and value-based

(Kheradmandian & Rahmati, 2009; Mannor et al., 2004; Şimşek

& Barto, 2009). In both of them, a graph is formed based on

state-action transitions to extract bottlenecks. A mechanism is

considered as value-based approach if reward function or states

values are somehow directly applied in the process of identify-

ing bottlenecks, like Digney (1998), Mcgovern (2002), Şimşek and

Barto (2004, 2009), Stolle (2004), and Thrun and Schwartz (1995),

and the extracted bottlenecks are regarded as value bottlenecks.

Topology-based methods look for the states which separate the

state-action transition graph into parts that are densely connected

internally but externally connected sparsely, such as Chiu and Soo

(2010), Kheradmandian and Rahmati (2009), Mannor et al. (2004),

Menache et al. (2002), Şimşek and Barto (2009), and Şimşek et al.

(2005). In this paper, value-based bottlenecks will be considered

in an offline manner and topology-based ones in an offline and an

online manner.

The organization of the rest of this paper is as follows. Section 2

represents the literature review with regard to the context of

creating temporally extended actions in RL. Also, the theoretical

background of the proposed method as well as the conceptual sim-

ilarities of its key modules to other methods in the context of vi-

sual processing and cognitive science and the main contributions

of the proposed method is presented. Sections 3 and 4 will de-

scribe the framework in the form of modules in a formal way and

in online manner respectively. And also, the details of how these

modules work and their relationships are discussed, and the for-

mulas are calculated and clarified in the form of a simple example.

Afterward, the effects of the proposed method on the precision and

the speed of learning will be shown in Section 5. In Section 6, the

advantages of the mechanism of the proposed method will be de-

scribed based on its evaluation in the form of four basic criteria. Fi-

nally, the conclusion and discussion of the study will be presented

in Section 7.

2. Related works

The methods proposed to extract bottlenecks or sub-goals so

far can be categorized into two groups. First, methods such as

Digney (1998), Mcgovern (2002), Şimşek and Barto (2004, 2009),

Stolle (2004), and Thrun and Schwartz (1995) which calculate their

criteria among different paths of the agent or shortest paths be-

tween nodes of graph. They typically get in trouble in more se-

vere form as state space becomes large, and also when the re-

quired number of actions for attaining the goal increases (delay

reward). The second group includes methods, like Chiu and Soo

(2010), Kheradmandian and Rahmati (2009), Mannor et al. (2004),

Menache et al. (2002), Şimşek and Barto (2009), and Şimşek et

al. (2005), that calculate some proposed criteria among enormous

combinations of state clusters among objects to find bottlenecks.

They are generally based on density measures to cluster state space

and to evaluate these clusters. The required parameters of these

approaches as threshold values are used to indicate possible bot-

tleneck states. Large state spaces issue makes real troubles in re-

gard to the time required for extracting bottlenecks. These meth-

ods also disregard some bottlenecks if some clusters have smaller

densities comparing to other neighbor’s clusters. Both groups of

these methods are based on clustering or classification approach to

separate sub-goals/bottlenecks. In both approaches, it is not com-

putationally tractable to calculate their metrics regarding different
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