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Abstract

The aim of this paper is to complete some results in the paper “Migrative uninorms and nullnorms over t-norms and 
t-conorms” [1]. That paper studied the alpha-migrativity of uninorms over t-norms. Here, migrativity in the other direction is 
investigated.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As is pointed out by Fodor and Rudas [2], the migrativity of a t-norm T over a t-norm T0 is equivalent to the 
migrativity of a t-norm T0 over a t-norm T . Recently, Mas et al. studied the α-migrativity of uninorms over t-norms. 
But the other direction, i.e., α-migrativity of t-norms and t-conorms over uninorms is missing. However, we find that 
the migrativity of a uninorm U over a t-norm T is not equivalent to the migrativity of a t-norm T over a uninorm U . 
In this paper, we point out the similarities and differences between the migrativity of a uninorm U over a t-norm T
and the migrativity of a t-norm T over a uninorm U and we do an analogous study for the migrativity of t-conorms 
over uninorms (see Sec. 3 for details). The case for t-norms/t-conorms over nullnorms will be handled similarly (see 
Sec. 4 for details).

2. Preliminaries

The basic notions and results of t-norms and t-conorms can be found in [3]. We will just give in this section some 
basic facts about uninorms.
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Definition 2.1. (See [3].) A binary operation U : [0, 1]2 → [0, 1] is called a uninorm if it is associative, commutative, 
non-decreasing in each place and has a neutral element e ∈ [0, 1].

A uninorm with neutral element e = 1 is clearly a t-norm and a uninorm with neutral element e = 0 is a t-conorm. 
Any uninorm U satisfies that U(0, 1) ∈ {0, 1} and it is called conjunctive when U(1, 0) = 0 and disjunctive when 
U(1, 0) = 1.

Definition 2.2. (See Mas et al. [1].) Let U be a conjunctive uninorm. We will say that U is locally internal on the 
boundary if it satisfies U(1, x) ∈ {1, x} for all x ∈ [0, 1].

Similarly, if U is a disjunctive uninorm. We will say that U is locally internal on the boundary if it satisfies 
U(0, x) ∈ {0, x} for all x ∈ [0, 1].

Definition 2.3. (See [3].) A binary operation F : [0, 1]2 → [0, 1] is called a nullnorm if it is associative, commutative, 
non-decreasing in each place and there exists k ∈ [0, 1] called absorbing element that verifies F(k, x) = k for all 
x ∈ [0, 1] and F(0, x) = x for all x ≤ k and F(1, x) = x for all x ≥ k.

In that case, when k = 0 we obtain a t-norm and when k = 1 we obtain a t-conorm.

3. Migrativity of t-norms/t-conorms over uninorms

Definition 3.1. Given a uninorm U and α ∈ [0, 1]. A t-norm T is said to be α-migrative over U or (α, U)-migrative if

T (U(α,x), y) = T (x,U(α, y)) (1)

for all x, y ∈ [0, 1].

Since the cases of t-norms and t-conorms are already known, we will consider only uninorms with neutral element 
e ∈ ]0, 1[.

Remark 3.1. In [2], Fodor and Rudas pointed out that T is α-migrative with respect to T0 if and only if T0 is 
α-migrative with respect to T if and only if T (α, x) = T0(α, x) for all x ∈ [0, 1]. But, it may not be true when 
one of two t-norms is replaced by a uninorm. Below, we give some counterexamples.

Example 3.1. Let TM(x, y) = min(x, y) for all x, y ∈ [0, 1] be a t-norm and

U(x, y) =
{

min(x, y) if x, y ∈ [0, 1
2 ],

max(x, y) otherwise,

be a uninorm with neutral element e = 1
2 . Then U is (1, TM)-migrative (see [4] in detail). But,
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i.e., TM is not (1, U)-migrative.

Example 3.2. For TM and U in Example 3.1, routine calculation shows that TM is ( 1
2 , U)-migrative. But,
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i.e., U is not ( 1
2 , TM)-migrative.

Below, we analyze some of initial properties of (α, U)-migrative t-norms.
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