

Available online at www.sciencedirect.com

Fuzzy Sets and Systems 283 (2016) 140-145

www.elsevier.com/locate/fss

Short communication

Notes on "Exact calculations of extended logical operations on fuzzy truth values"

Dechao Li

School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan, 316022, China

Received 9 September 2014; received in revised form 26 November 2014; accepted 28 November 2014

Available online 3 December 2014

Abstract

In this note, we show by counterexamples that Theorems 9 and 10, and Propositions 7, 18, 19 and 20 in a previous paper by Gera and Dombi (2008) [1] contain some flaws and then we provide the correct versions. © 2014 Elsevier B.V. All rights reserved.

Keywords: Fuzzy truth value; Extension principle; Type-2 fuzzy sets

1. Introduction

In order to strengthen the capability of modeling and manipulating inexact information in a logical manner, the concept of type-2 fuzzy sets was introduced by Zadeh [11]. In recent years, type-2 fuzzy sets have been utilized in many areas [2,3,5-9]. These applications give motivation to investigate the operation of type-2 fuzzy sets. Gera and Dombi provided some computationally formulas for extended *t*-norms and *t*-conorms [1]. However, we note that Theorems 9 and 10, and Propositions 17, 18, 19 and 20 are correct only if the *t*-norm is left-continuous. In this note, we represent some examples showing that they are no longer valid for non-continuous *t*-norms, and then we provide the correct versions.

2. Preliminary

In this section we will briefly recall the concepts of t-norms, t-conorms, implications and coimplications on the unit interval [0, 1].

Definition 2.1. (See [4].) A *t*-norm is a binary operation $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ that is commutative, associative, increasing in each variable, and has unit element 1.

http://dx.doi.org/10.1016/j.fss.2014.11.025 0165-0114/© 2014 Elsevier B.V. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.fss.2007.09.020. *E-mail address:* dch1831@163.com.

Definition 2.2. (See [4].) A *t*-conorm is a binary operation $S : [0, 1] \times [0, 1] \rightarrow [0, 1]$ that is commutative, associative, increasing in each variable, and has unit element 0.

Example 2.3. Some well-known *t*-norms on [0, 1] are T_M , T_P , T_L , and T_D given by, respectively:

$$T_M(x, y) = \min(x, y),$$

$$T_P(x, y) = xy,$$

$$T_L(x, y) = \max(x + y - 1, 0),$$

$$T_D(x, y) = \begin{cases} 0 & (x, y) \in [0, 1)^2, \\ \min(x, y) & \text{otherwise.} \end{cases}$$

Proposition 2.4. (See [4].) Let I be a nonempty index set. A t-norm T is lower semicontinuous if and only if it is left-continuous in each argument, i.e., for all $x, y \in [0, 1]$ and for all $\{x_i\}_{i \in I} \subseteq [0, 1], \{y_i\}_{i \in I} \subseteq [0, 1]$ we have

$$T\left(x, \sup_{i \in I} y_i\right) = \sup_{i \in I} T\left(x, y_i\right) \text{ and } T\left(\sup_{i \in I} x_i, y\right) = \sup_{i \in I} T\left(x_i, y\right).$$
(1)

By the same token, the upper semicontinuity of a t-norm is equivalent to its right-continuity in each component. And then a t-norm T is continuous if and only if it is left-continuous and right-continuous.

Example 2.5. (See [4].) The following is a non-continuous *t*-norm:

$$T_1(x, y) = \begin{cases} \frac{xy}{2} & (x, y) \in [0, 1)^2, \\ \min(x, y) & \text{otherwise.} \end{cases}$$

Definition 2.6. (See [4].) A t-norm *T* is called strict if it is continuous and strictly monotone.

Definition 2.7. (See [4].) A *t*-norm *T* is called nilpotent if it is continuous and if each $a \in (0, 1)$ is a nilpotent element of *T*.

Definition 2.8. (See [4].) The *t*-norm *T* is called Archimedean if for each $x, y \in (0, 1)$ there exists an $n \in \mathbb{N}$ such that $x_T^{(n)} < y$.

Proposition 2.9. (See [4].) For each Archimedean t-norm T the following are equivalent:

- i. T is left-continuous.
- ii. *T* is continuous.

Theorem 2.10. (See [4].) Let T be a continuous Archimedean t-norm. Then the following are equivalent:

- i. T is nilpotent.
- ii. There exists some nilpotent element of T.
- iii. There exists some zero divisor of T.
- iv. T is not strict.

In [1], the t-norm (t-conorm) is denoted as an infix notation $\Delta(\nabla)$ instead of the prefix notation T(x, y) (S(x, y)). So, in order to be consistent with [1], $\Delta(\nabla)$ denotes t-norm (t-conorm) in this note.

Definition 2.11. (See [1,4].) The residual implication $\triangleright : [0,1] \times [0,1] \rightarrow [0,1]$ associated with a left-continuous *t*-norm \triangle is defined by

$$x \rhd y = \bigvee \{ z | x \triangle z \le y \}.$$
⁽²⁾

Download English Version:

https://daneshyari.com/en/article/389098

Download Persian Version:

https://daneshyari.com/article/389098

Daneshyari.com