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Abstract

In this note, we show by counterexamples that Theorems 9 and 10, and Propositions 7, 18, 19 and 20 in a previous paper by Gera 
and Dombi (2008) [1] contain some flaws and then we provide the correct versions.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In order to strengthen the capability of modeling and manipulating inexact information in a logical manner, the 
concept of type-2 fuzzy sets was introduced by Zadeh [11]. In recent years, type-2 fuzzy sets have been utilized in 
many areas [2,3,5–9]. These applications give motivation to investigate the operation of type-2 fuzzy sets. Gera and 
Dombi provided some computationally formulas for extended t -norms and t -conorms [1]. However, we note that 
Theorems 9 and 10, and Propositions 17, 18, 19 and 20 are correct only if the t -norm is left-continuous. In this note, 
we represent some examples showing that they are no longer valid for non-continuous t -norms, and then we provide
the correct versions.

2. Preliminary

In this section we will briefly recall the concepts of t -norms, t -conorms, implications and coimplications on the 
unit interval [0, 1].

Definition 2.1. (See [4].) A t -norm is a binary operation T : [0, 1] × [0, 1] → [0, 1] that is commutative, associative, 
increasing in each variable, and has unit element 1.
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Definition 2.2. (See [4].) A t -conorm is a binary operation S : [0, 1] ×[0, 1] → [0, 1] that is commutative, associative, 
increasing in each variable, and has unit element 0.

Example 2.3. Some well-known t -norms on [0, 1] are TM , TP , TL, and TD given by, respectively:

TM(x, y) = min(x, y),

TP (x, y) = xy,

TL(x, y) = max(x + y − 1,0),

TD(x, y) =
{

0 (x, y) ∈ [0,1)2,

min(x, y) otherwise.

Proposition 2.4. (See [4].) Let I be a nonempty index set. A t -norm T is lower semicontinuous if and only if it is 
left-continuous in each argument, i.e., for all x, y ∈ [0, 1] and for all {xi}i∈I ⊆ [0, 1], {yi}i∈I ⊆ [0, 1] we have

T
(
x, sup

i∈I

yi

)
= sup

i∈I

T (x, yi) and T
(

sup
i∈I

xi, y
)

= sup
i∈I

T (xi, y). (1)

By the same token, the upper semicontinuity of a t -norm is equivalent to its right-continuity in each component. 
And then a t -norm T is continuous if and only if it is left-continuous and right-continuous.

Example 2.5. (See [4].) The following is a non-continuous t -norm:

T1(x, y) =
{

xy
2 (x, y) ∈ [0,1)2,

min(x, y) otherwise.

Definition 2.6. (See [4].) A t-norm T is called strict if it is continuous and strictly monotone.

Definition 2.7. (See [4].) A t -norm T is called nilpotent if it is continuous and if each a ∈ (0, 1) is a nilpotent element 
of T .

Definition 2.8. (See [4].) The t -norm T is called Archimedean if for each x, y ∈ (0, 1) there exists an n ∈ N such 
that x

(n)
T < y.

Proposition 2.9. (See [4].) For each Archimedean t -norm T the following are equivalent:

i. T is left-continuous.
ii. T is continuous.

Theorem 2.10. (See [4].) Let T be a continuous Archimedean t -norm. Then the following are equivalent:

i. T is nilpotent.
ii. There exists some nilpotent element of T .

iii. There exists some zero divisor of T .
iv. T is not strict.

In [1], the t -norm (t -conorm) is denoted as an infix notation � (�) instead of the prefix notation T (x, y) (S(x, y)). 
So, in order to be consistent with [1], � (�) denotes t -norm (t -conorm) in this note.

Definition 2.11. (See [1,4].) The residual implication � : [0, 1] × [0, 1] → [0, 1] associated with a left-continuous 
t -norm � is defined by

x � y =
∨

{z|x�z ≤ y}. (2)
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