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Abstract

We prove “large associativity” of the partial sum in effect algebras and present an overview of distributivity-like properties of 
partial operations ⊕ and � in effect algebras with respect to (possibly infinite) suprema and infima and vice versa generalizing 
several previous results.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Effect algebras [4] and equivalent D-posets [6] were introduced in the nineties of the twentieth century as “unsharp” 
generalizations of “sharp” quantum logics (orthomodular lattices, orthomodular posets, orthoalgebras) incorporating 
some fuzzy logics (MV-algebras). E.g., consider the effect algebra ([0, 1], ⊕, 0, 1) with the real unit interval [0, 1] and 
the partial operation ⊕ defined as the sum of real numbers whenever this sum belongs to [0, 1]. This effect algebra 
corresponds to MV-algebra with the Łukasiewicz t-conorm ⊕ if we extend the definition of ⊕ by a ⊕ b = 1 whenever 
a + b > 1.

Effect algebras are partially ordered by a natural way. The distributivity-like properties of suprema and infima 
(possibly infinite) with respect to partial operations ⊕ and � and vice versa were studied by Bennett and Foulis [1]
in the context of effect algebras (sometime assuming that they form a lattice) and by Chovanec and Kôpka [2] in the 
context of D-posets (for two-element sets assuming that the D-posets form a lattice). We present a unified overview 
of generalizations of these results.

A “large associativity” (also for infinite number of elements) of the partial operation ⊕ was studied by 
Riečanová [7] in the context of abelian RI-posets for complete lattices and by Ji [5] for orthocomplete effect algebras. 
We generalize these results for effect algebras.

We present examples showing that these results cannot be improved to obtain distributivity (associativity, resp.) in 
all cases.
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Our results can be useful in the study of effect algebras (quantum and fuzzy structures)—see, e.g., [1,3,5]. They 
seem to be ultimate because we were able to omit all assumptions for the underlying structure and for the cardinalities 
of considered sets.

2. Basic notions and properties

Let us start with a review of basic notions and properties.

Definition 2.1. An effect algebra is an algebraic structure (E, ⊕, 0, 1) such that E is a set, 0 and 1 are different 
elements of E, and ⊕ is a partial binary operation on E such that for every a, b, c ∈ E the following conditions hold:

(1) a ⊕ b = b ⊕ a, if one side exists;
(2) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c, if one side exists;
(3) there is a unique orthosupplement a′ such that a ⊕ a′ = 1;
(4) a = 0 whenever a ⊕ 1 is defined.

For simplicity, we will use the notation E for an effect algebra. A partial ordering on an effect algebra E is defined 
by a ≤ b if there is a c ∈ E such that b = a ⊕ c. Such an element c is unique (if it exists), is equal to (a ⊕ b′)′ and is 
denoted by b � a. In particular, a′ = 1 � a. With respect to this partial ordering, 0 (1, resp.) is the least (the greatest, 
resp.) element of E. The orthosupplementation is an antitone involution, i.e., for every a, b ∈ E, a′′ = a and b′ ≤ a′
whenever a ≤ b. An orthogonality relation on E is defined by a ⊥ b if a ⊕ b exists (that is if and only if a ≤ b′). It 
can be shown that a ⊕ 0 = a for every a ∈ E and that the cancellation law is valid: if a ⊕ c ≤ b ⊕ c then a ≤ b (in 
particular, if a ⊕ c = b ⊕ c then a = b). See, e.g., [3,4].

An equivalent notion (in the sense of a natural correspondence) of a D-poset defined by the properties of the partial 
operation � is used sometimes. See, e.g., [3,6].

Definition 2.2. Let E be an effect algebra. A system (ai)i∈I of elements of E is orthogonal if 
⊕

i∈F ai is defined for 
every finite set F ⊆ I . A majorant of an orthogonal system is an upper bound of all its finite sums. The sum

⊕
i∈I ai

of an orthogonal system (ai)i∈I is its least majorant (if it exists).

A finite system is orthogonal if and only if the sum of all its elements is defined. Every subsystem of an orthogonal 
system is orthogonal. The empty system is orthogonal and its sum is the least element 0. Every pair of elements in an 
orthogonal system is orthogonal. On the other hand there are nonorthogonal systems of pairwise orthogonal elements 
if (and only if) the effect algebra does not form an orthomodular poset.

A simple example of an effect algebra is the structure ([0, 1], ⊕, 0, 1) where [0, 1] is the interval of real numbers 
and ⊕ is defined by a ⊕ b = a + b for a + b ≤ 1. Then a � b = a − b (whenever it is defined).

Let us summarize some properties of the operations ⊕ and � showing that these partial operations behave very 
much like the real operations + and −. The basic difference is that we have to take care whether they are defined.

Lemma 2.3. Let E be an effect algebra, a, b, c, ai ∈ E, i ∈ I , I is finite:
(1) If b = ⊕

i∈I ai then b ≥ ⊕
i∈J ai and b �⊕

i∈J ai = ⊕
i∈I\J ai for every J ⊆ I . In particular, (a ⊕ b) � b = a

whenever a ⊥ b.
(2) If a ≤ b then a ⊕ (b � a) = b, b � (b � a) = a and b � a = a′ � b′.
(3) If a ≤ b ⊥ c then a ⊕ c ≤ b ⊕ c and b ⊕ c = (a ⊕ c) ⊕ (b � a), i.e., (b ⊕ c) � a = (b � a) ⊕ c.
(4) If a ≤ b ≤ c then c � a = (b � a) ⊕ (c � b), i.e., b � a ≤ c � a and c � b ≤ c � a.
(5) c � (a ⊕ b) = (c � a) � b = (c � b) � a whenever one of the compared expressions exists.
(6) If a ⊥ b then (a ⊕ b)′ = a′ � b = b′ � a.

Proof. (1) It is a consequence of the commutativity and associativity of ⊕ and of the definition of �.
(2) The first equality is the definition of b � a, the second follows using part (1), the third follows from the 

cancellation law and from the equality (we use b′ ≤ a′) a ⊕ (b � a) ⊕ b′ = b ⊕ b′ = 1 = a ⊕ a′ = a ⊕ b′ ⊕ (a′ � b′).
(3) b ⊕ c = a ⊕ (b � a) ⊕ c = (a ⊕ c) ⊕ (b � a).
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