FUZZY
sets and systems

On the power sequence of a fuzzy matrix with convex combination of max-product and max-min operations

Chia-Cheng Liu ${ }^{\text {a }}$, Yan-Kuen Wu ${ }^{\text {b,1 }}$, Yung-Yih Lur ${ }^{\text {a,*,2, }}$, Chia-Lun Tsai ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Industrial Management, Vanung University, Taoyuan, 320, Taiwan, ROC
b Department of Business Administration, Vanung University, Taoyuan, 320, Taiwan, ROC
${ }^{\text {c }}$ Department of Management and Information Technology, Vanung University, Taoyuan, 320, Taiwan, ROC

Received 5 November 2013; received in revised form 14 October 2014; accepted 9 June 2015
Available online 19 June 2015

Abstract

In the literature, the powers of a fuzzy matrix with max-min/max-product/max Archimedean t-norm/max t-norm $/$ max-arithmetic mean compositions have been studied. It turns out that the limiting behavior of the powers of a fuzzy matrix depends on the composition involved. In this paper, we consider the powers of a fuzzy matrix with convex combination of max-product and max-min operations. We show that the powers of a fuzzy matrix A with such operations are asymptotical p-period if and only if the powers of an associated Boolean matrix \bar{A} are p-periodic. Moreover, necessary and sufficient conditions for such a fuzzy matrix to be nilpotent are proposed.

© 2015 Elsevier B.V. All rights reserved.

Keywords: Convex combination of max-product and max-min composition; Asymptotical p-period; Nilpotence

1. Introduction

Fuzzy matrices have been proposed to represent fuzzy relations on finite universes. By a fuzzy matrix A, we mean $A=\left[a_{i j}\right]$ with $a_{i j} \in[0,1]$. Let A be an $n \times n$ fuzzy matrix. The corresponding Boolean matrix \bar{A} of A is defined by

$$
\bar{A}_{i j}:= \begin{cases}1 & \text { if } a_{i j}=1, \\ 0 & \text { otherwise. }\end{cases}
$$

Given $\lambda \in[0,1]$, the convex combination of max-product and max-min operation, denoted by " \otimes ", for matrix A can be defined as

[^0]$$
[A \otimes A]_{i j}=\max _{1 \leq t \leq n}\left\{a_{i t} \otimes a_{t j}\right\}=\max _{1 \leq t \leq n}\left\{\lambda a_{i t} a_{t j}+(1-\lambda) \min \left\{a_{i t}, a_{t j}\right\}\right\}, \forall 1 \leq i, j \leq n
$$

We note that if $\lambda=1$ then the operation \otimes becomes the commonly seen max product operation. On the other hand, if $\lambda=0$ then \otimes becomes the max-min operation. Since it is very easy to illustrate by numerical examples that the operation \otimes is nonassociative, we therefore define the powers A^{k} of A by

$$
A_{\otimes}^{k}=\left(A_{\otimes}^{k-1}\right) \otimes A, k=2,3, \cdots
$$

where $A_{\otimes}^{1}=A$.
Powers of a fuzzy matrix play a crucial role in finding the transitive closure of the underlying fuzzy relation. Thomason's paper [22] was the first to explore the powers of a fuzzy relation. He showed that the max-min powers of a fuzzy matrix [2,5-8,11-17] either converge to an idempotent matrix or oscillate with a finite period. On the other hand, the behavior of max-product powers of a fuzzy matrix is quite different from the case with the max-min fuzzy matrices [1,21]. In the literature, characterization of max-product powers of a fuzzy matrix was in terms of the notion of asymptotic period [10]. It turns out the limiting behavior of the consecutive powers can be completely determined by an associated Boolean matrix [21]. Since the powers of a Boolean matrix are easy to compute, the limiting behavior of the consecutive powers of a max-product fuzzy matrix can be determined efficiently. It is well known that the max-product operation is one of the max-Archimedean t-norms. This Boolean characterization has been extended to the environment with max-Archimedean t-norms [20].

Various publications [2,3,6-10,12] evaluated the powers of a fuzzy matrix with max-min/max-product/lattice compositions and studied the relative properties or applications with these compositions in the literatures, however the limiting behavior of the powers of a fuzzy matrix depends on its composition. The above Fuzzy Algebras $([0,1], \max , \odot)$ are fairly general subclass of dioïds where addition is the maximum of two real numbers and \odot is an arbitrary t-norm [9]. The algebraic structures ([0, 1], max, min) (see, e.g. [4]) and ([0, 1], max, •) are recognized as instances of dioïds, where "." is the standard product. Applications of dioïd and semiring structures, stressing links with Fuzzy Sets and emphasizing linear algebraic problems, non-classical path-finding problems and connections between dioïd structure and nonlinear analysis can be found in [9]. Lur et al. [19] has studied the powers of a max-arithmetic mean fuzzy matrix. It was showed that the powers of a max-arithmetic mean fuzzy matrix are always convergent. Moreover, the convex combination of the max-min and max-arithmetic mean powers of a fuzzy matrix are always convergent for all $0 \leq \lambda<1$ [18]. This result means that the major behavior of powers of a max-min fuzzy matrix shall change significantly and follow the property inherited from the max-arithmetic mean fuzzy matrix. The current paper is motivated by this result. We want to investigate what behavior of powers of a fuzzy matrix will happen when the max-arithmetic operator is replaced by max-product operator.

In this paper, we show that the powers of a \otimes fuzzy matrix are asymptotical p-period if and only if the powers of \bar{A} are p-periodic for all $0<\lambda \leq 1$. Thus as long as $\lambda \neq 0$, the limiting behavior of powers of this fuzzy matrix is same to that of a max product fuzzy matrix. This result is very interesting if we consider whether the max-min operation is "robust" or not. When the max-min operation is "perturbed" a little bit in sense of our convex combination (this may correspond to a λ very close to 0), then the major behavior of powers of a max-min fuzzy matrix shall change significantly and follow the property inherited from the max product fuzzy matrix.

2. Preliminaries

Let $0 \leq \lambda \leq 1$ be given. The convex combination of the product and min operator \otimes from $[0,1] \times[0,1]$ to $[0,1]$ is defined by

$$
a \otimes b=\lambda a b+(1-\lambda) \min \{a, b\}, \text { for all } a, b \in[0,1] .
$$

It follows that $(a \otimes b) \otimes c$ is not necessary equal to $a \otimes(b \otimes c)$, that is, \otimes is nonassociative. The product of $a_{1} \otimes a_{2} \otimes$ $\cdots \otimes a_{k}$ is meant to be

$$
a_{1} \otimes a_{2} \otimes \cdots \otimes a_{k}=\left(\left(\left(\left(a_{1} \otimes a_{2}\right) \otimes a_{3}\right) \otimes \cdots\right) \otimes a_{k}\right)
$$

for all $a_{1}, a_{2}, \ldots, a_{k} \in[0,1]$. Define $a_{\otimes}^{1}=a$ and $a_{\otimes}^{k}=a_{\otimes}^{k-1} \otimes a$ for all $k \geq 2$. Let $a, b, c, d \in[0,1]$ be given. It is obvious that $a \otimes b \leq c \otimes d$ if $a \leq c$ and $b \leq d$. Recall that the convex combination of max-product and max-min composition for $A=\left[a_{i j}\right]$ is defined as

https://daneshyari.com/en/article/389220

Download Persian Version:

https://daneshyari.com/article/389220

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: liuht@vnu.edu.tw (C.-C. Liu), ykw@vnu.edu.tw (Y.-K. Wu), yylur@ vnu.edu.tw (Y.-Y. Lur), s64261992@yahoo.com.tw (C.-L. Tsai).

 1 Research is supported by MOST 103-2410-H-238-004.
 2 Research is supported by MOST 103-2115-M-238-001.

