



Available online at www.sciencedirect.com



Fuzzy Sets and Systems 289 (2016) 157-163



www.elsevier.com/locate/fss

## On the power sequence of a fuzzy matrix with convex combination of max-product and max-min operations

Chia-Cheng Liu<sup>a</sup>, Yan-Kuen Wu<sup>b,1</sup>, Yung-Yih Lur<sup>a,\*,2</sup>, Chia-Lun Tsai<sup>c</sup>

<sup>a</sup> Department of Industrial Management, Vanung University, Taoyuan, 320, Taiwan, ROC

<sup>b</sup> Department of Business Administration, Vanung University, Taoyuan, 320, Taiwan, ROC

<sup>c</sup> Department of Management and Information Technology, Vanung University, Taoyuan, 320, Taiwan, ROC

Received 5 November 2013; received in revised form 14 October 2014; accepted 9 June 2015

Available online 19 June 2015

#### Abstract

In the literature, the powers of a fuzzy matrix with max-min/max-product/max Archimedean t-norm/max t-norm/max-arithmetic mean compositions have been studied. It turns out that the limiting behavior of the powers of a fuzzy matrix depends on the composition involved. In this paper, we consider the powers of a fuzzy matrix with convex combination of max-product and max-min operations. We show that the powers of a fuzzy matrix A with such operations are asymptotical p-period if and only if the powers of an associated Boolean matrix  $\overline{A}$  are p-periodic. Moreover, necessary and sufficient conditions for such a fuzzy matrix to be nilpotent are proposed.

© 2015 Elsevier B.V. All rights reserved.

Keywords: Convex combination of max-product and max-min composition; Asymptotical p-period; Nilpotence

#### 1. Introduction

Fuzzy matrices have been proposed to represent fuzzy relations on finite universes. By a fuzzy matrix A, we mean  $A = [a_{ij}]$  with  $a_{ij} \in [0, 1]$ . Let A be an  $n \times n$  fuzzy matrix. The corresponding Boolean matrix  $\overline{A}$  of A is defined by

 $\bar{A}_{ij} := \begin{cases} 1 & \text{if } a_{ij} = 1, \\ 0 & \text{otherwise.} \end{cases}$ 

Given  $\lambda \in [0, 1]$ , the convex combination of max-product and max-min operation, denoted by " $\otimes$ ", for matrix A can be defined as

\* Corresponding author.

http://dx.doi.org/10.1016/j.fss.2015.06.010 0165-0114/© 2015 Elsevier B.V. All rights reserved.

*E-mail addresses:* liuht@vnu.edu.tw (C.-C. Liu), ykw@vnu.edu.tw (Y.-K. Wu), yylur@vnu.edu.tw (Y.-Y. Lur), s64261992@yahoo.com.tw (C.-L. Tsai).

<sup>&</sup>lt;sup>1</sup> Research is supported by MOST 103-2410-H-238-004.

<sup>&</sup>lt;sup>2</sup> Research is supported by MOST 103-2115-M-238-001.

$$[A \otimes A]_{ij} = \max_{1 \le t \le n} \{a_{it} \otimes a_{tj}\} = \max_{1 \le t \le n} \{\lambda a_{it} a_{tj} + (1 - \lambda) \min\{a_{it}, a_{tj}\}\}, \forall 1 \le i, j \le n$$

We note that if  $\lambda = 1$  then the operation  $\otimes$  becomes the commonly seen max product operation. On the other hand, if  $\lambda = 0$  then  $\otimes$  becomes the max-min operation. Since it is very easy to illustrate by numerical examples that the operation  $\otimes$  is nonassociative, we therefore define the powers  $A^k$  of A by

$$A^k_{\otimes} = (A^{k-1}_{\otimes}) \otimes A, \ k = 2, 3, \cdots$$

where  $A^1_{\otimes} = A$ .

Powers of a fuzzy matrix play a crucial role in finding the transitive closure of the underlying fuzzy relation. Thomason's paper [22] was the first to explore the powers of a fuzzy relation. He showed that the max-min powers of a fuzzy matrix [2,5–8,11–17] either converge to an idempotent matrix or oscillate with a finite period. On the other hand, the behavior of max-product powers of a fuzzy matrix is quite different from the case with the max-min fuzzy matrices [1,21]. In the literature, characterization of max-product powers of a fuzzy matrix was in terms of the notion of asymptotic period [10]. It turns out the limiting behavior of the consecutive powers can be completely determined by an associated Boolean matrix [21]. Since the powers of a Boolean matrix are easy to compute, the limiting behavior of the consecutive powers of a max-product fuzzy matrix can be determined efficiently. It is well known that the max-product operation is one of the max-Archimedean t-norms. This Boolean characterization has been extended to the environment with max-Archimedean t-norms [20].

Various publications [2,3,6-10,12] evaluated the powers of a fuzzy matrix with max-min/max-product/lattice compositions and studied the relative properties or applications with these compositions in the literatures, however the limiting behavior of the powers of a fuzzy matrix depends on its composition. The above Fuzzy Algebras  $([0, 1], \max, \odot)$  are fairly general subclass of dioïds where addition is the maximum of two real numbers and  $\odot$  is an arbitrary *t*-norm [9]. The algebraic structures ([0, 1], max, min) (see, e.g. [4]) and ([0, 1], max,  $\cdot$ ) are recognized as instances of dioïds, where " $\cdot$ " is the standard product. Applications of dioïd and semiring structures, stressing links with Fuzzy Sets and emphasizing linear algebraic problems, non-classical path-finding problems and connections between dioïd structure and nonlinear analysis can be found in [9]. Lur et al. [19] has studied the powers of a max-arithmetic mean fuzzy matrix. It was showed that the powers of a max-arithmetic mean fuzzy matrix are always convergent. Moreover, the convex combination of the max-min and max-arithmetic mean powers of a fuzzy matrix are always convergent for all  $0 \le \lambda < 1$  [18]. This result means that the major behavior of powers of a max-min fuzzy matrix shall change significantly and follow the property inherited from the max-arithmetic mean fuzzy matrix. The current paper is motivated by this result. We want to investigate what behavior of powers of a fuzzy matrix will happen when the max-arithmetic operator is replaced by max-product operator.

In this paper, we show that the powers of a  $\otimes$  fuzzy matrix are asymptotical *p*-period if and only if the powers of  $\overline{A}$  are *p*-periodic for all  $0 < \lambda \le 1$ . Thus as long as  $\lambda \ne 0$ , the limiting behavior of powers of this fuzzy matrix is same to that of a max product fuzzy matrix. This result is very interesting if we consider whether the max-min operation is "robust" or not. When the max-min operation is "perturbed" a little bit in sense of our convex combination (this may correspond to a  $\lambda$  very close to 0), then the major behavior of powers of a max-min fuzzy matrix shall change significantly and follow the property inherited from the max product fuzzy matrix.

### 2. Preliminaries

Let  $0 \le \lambda \le 1$  be given. The convex combination of the product and min operator  $\otimes$  from  $[0, 1] \times [0, 1]$  to [0, 1] is defined by

$$a \otimes b = \lambda ab + (1 - \lambda) \min\{a, b\}$$
, for all  $a, b \in [0, 1]$ .

It follows that  $(a \otimes b) \otimes c$  is not necessary equal to  $a \otimes (b \otimes c)$ , that is,  $\otimes$  is nonassociative. The product of  $a_1 \otimes a_2 \otimes \cdots \otimes a_k$  is meant to be

$$a_1 \otimes a_2 \otimes \cdots \otimes a_k = ((((a_1 \otimes a_2) \otimes a_3) \otimes \cdots) \otimes a_k)),$$

for all  $a_1, a_2, \ldots, a_k \in [0, 1]$ . Define  $a_{\otimes}^1 = a$  and  $a_{\otimes}^k = a_{\otimes}^{k-1} \otimes a$  for all  $k \ge 2$ . Let  $a, b, c, d \in [0, 1]$  be given. It is obvious that  $a \otimes b \le c \otimes d$  if  $a \le c$  and  $b \le d$ . Recall that the convex combination of max-product and max-min composition for  $A = [a_{ij}]$  is defined as

Download English Version:

# https://daneshyari.com/en/article/389220

Download Persian Version:

https://daneshyari.com/article/389220

Daneshyari.com