



Available online at www.sciencedirect.com



Fuzzy Sets and Systems 238 (2014) 129-134



www.elsevier.com/locate/fss

Short communication

# A note on the definition of a generalized fuzzy normed space

Dorel Miheț\*, Claudia Zaharia

West University of Timişoara, Faculty of Mathematics and Computer Science, Bv. V. Pârvan 4, 300223 Timişoara, Romania

Received 4 October 2012; received in revised form 29 January 2013; accepted 18 July 2013

Available online 29 July 2013

#### Abstract

We reconsider the definition of a generalized fuzzy normed space from [I. Goleţ, On generalized fuzzy normed spaces and coincidence point theorems, Fuzzy Sets and Systems 161 (2010) 1138–1144], showing that the mapping used in the homogeneity axiom must satisfy the multiplicative Cauchy functional equation. Therefore, generalized fuzzy normed spaces are, in fact, fuzzy *p*-normed spaces with p > 0.

© 2013 Elsevier B.V. All rights reserved.

Keywords: Generalized fuzzy normed space; t-Norm of H-type; p-Normed space

## 1. Introduction

The concepts of  $\varphi$ -normed space and generalized fuzzy normed space (or fuzzy  $\varphi$ -normed space) were introduced as generalizations of those of normed space and fuzzy normed space, by considering an appropriate function  $\varphi$  in the homogeneity axiom.

We recall these definitions, as given in [2]. Here  $\varphi : \mathbb{R} \to \mathbb{R}$  is a function with the properties:

- (i)  $\varphi(-t) = \varphi(t)$  for every  $t \in \mathbb{R}$ ;
- (ii)  $\varphi(1) = 1$ ;

(iii)  $\varphi$  is strictly increasing and continuous on  $[0, \infty)$ ,  $\varphi(0) = 0$  and  $\lim_{t \to \infty} \varphi(t) = \infty$ .

**Definition 1.** (See [2, Definition 2.3].) A  $\varphi$ -normed space is a pair  $(L, \|\cdot\|)$ , where L is a real vector space and  $\|\cdot\|$  is a real valued mapping defined on L satisfying

- (N1)  $||x|| \ge 0$  for all  $x \in L$ , and ||x|| = 0 if and only if  $x = \theta$ ;
- (N2)  $\|\alpha x\| = \varphi(\alpha) \|x\|$  for all  $x \in L, \alpha \in \mathbb{R}$ , where  $\varphi$  is a function with the properties (i)–(iii);
- (N3)  $||x + y|| \le ||x|| + ||y||$ , for all  $x, y \in L$ .

\* Corresponding author.

0165-0114/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.fss.2013.07.016

E-mail addresses: mihet@math.uvt.ro (D. Miheţ), czaharia@math.uvt.ro (C. Zaharia).

**Definition 2.** (See [2, Definition 2.1].) A fuzzy  $\varphi$ -normed space is a triple (L, N, \*), where L is a real vector space, \* is a continuous t-norm, and N is a mapping from  $L \times [0, \infty)$  into [0, 1] such that the following conditions hold:

- (FN1) N(x, 0) = 0 for all  $x \in L$ ; (FN2) N(x, t) = 1 for all t > 0 if and only if  $x = \theta$  (the null vector); (FN3)  $N(\alpha x, t) = N(x, \frac{t}{\varphi(\alpha)})$  for all x in  $L, \alpha \neq 0$  and t > 0;
- (FN4)  $N(x + y, t + s) \ge \widetilde{N}(x, t) * N(y, s)$  for all  $x, y \in L$  and  $t, s \ge 0$ ;

(FN5) the mapping  $N(x, .) : [0, \infty) \to [0, 1]$  is left continuous for all  $x \in L$ .

If  $\varphi(t) = |t|$  one obtains the definition of a fuzzy normed space [1]. If  $\varphi(t) = |t|^p$  with  $p \in (0, 1]$ , then the space is called a *fuzzy p-normed space* [2]. Note that fuzzy *p*-normed spaces can be regarded as an extension of (deterministic) *p*-normed spaces. For convenience, the definition of these spaces is recalled below (cf. [6]).

**Definition 3.** Let  $p \in (0, 1]$ . A *p*-normed space is a real vector space *L* endowed with a *p*-norm  $\|\cdot\|_p$ , that is, the following conditions are satisfied:

- (1)  $||x||_p \ge 0$  for all  $x \in L$ , and  $||x||_p = 0$  if and only if  $x = \theta$ ;
- (2)  $\|\alpha x\|_p = |\alpha|^p \|x\|_p$  for all  $x \in L, \alpha \in \mathbb{R}$ ;
- (3)  $||x + y||_p \leq ||x||_p + ||y||_p$ , for all  $x, y \in L$ .

It is worth mentioning that every *p*-normed space  $(L, \|\cdot\|_p)$  induces in a natural way a fuzzy *p*-normed space (L, N, Min) with

 $N(x,t) = \begin{cases} 0, & t \leq \|x\|, \\ 1, & t > \|x\|. \end{cases}$ 

The aim of this paper is to show that the only generalized fuzzy normed spaces in the sense of Definition 2 are fuzzy *p*-normed spaces, with  $p \in (0, \infty)$ . Namely, we prove that the mapping  $\varphi$  from the above definitions must satisfy the multiplicative Cauchy functional equation  $\varphi(uv) = \varphi(u)\varphi(v)$ , and therefore it can only be of the form  $\varphi(t) = |t|^p$ , for some positive *p*. Although for a large class of spaces, including those endowed with the triangular norm *Min*, *p* must be in (0, 1], we can also give an example of a fuzzy *p*-normed space with p > 1.

### 2. Main results

We will show that, if the function  $\varphi$  from the definition of a fuzzy  $\varphi$ -normed space has the property that  $\varphi(ab) \neq \varphi(b)\varphi(a)$ , for some  $a, b \neq 0$ , then  $N(x, \cdot)$  is a constant mapping on  $(0, \infty)$  for every  $x \in L$ . As such,

$$N\left(x,\frac{t}{\varphi(\alpha)}\right) = N\left(x,\frac{t}{|\alpha|}\right) \quad (x \in L, \alpha \neq 0, t > 0),$$

hence the axiom (FN3) is not different from that in the definition of a fuzzy normed space [1]. Therefore, in order to have a proper generalization of the homogeneity axiom, the equality  $\varphi(ab) = \varphi(b)\varphi(a)$  must hold for every  $a, b \neq 0$ . As this equality obviously holds if either of a or b is 0, we conclude that  $\varphi$  must satisfy  $\varphi(uv) = \varphi(u)\varphi(v)$  for all  $u, v \in \mathbb{R}$ . But it is well known (see e.g., [5, Theorem 1.49]), that the only nonconstant, even, continuous solution of the multiplicative Cauchy functional equation  $\varphi(uv) = \varphi(u)\varphi(v)$  is given by  $\varphi(t) = |t|^p$ , for some positive p.

To prove our claim, let (L, N, \*) be a fuzzy  $\varphi$ -normed space and  $x \in L$ , a, b > 0 be given. From (FN3) it follows that

$$N(abx,t) = N\left(x, \frac{t}{\varphi(ab)}\right),$$

for all t > 0. On the other hand,

$$N(abx,t) = N\left(bx,\frac{t}{\varphi(a)}\right) = N\left(x,\frac{t}{\varphi(b)\varphi(a)}\right),$$

for all t > 0.

Download English Version:

# https://daneshyari.com/en/article/389396

Download Persian Version:

https://daneshyari.com/article/389396

Daneshyari.com