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Abstract

Automata-based methods have been successfully employed to prove tight complexity bounds for reasoning in many classical 
logics, and in particular in Description Logics (DLs). Very recently, the ideas behind these automata-based approaches were adapted 
for reasoning also in fuzzy extensions of DLs, with semantics based either on finitely many truth degrees or the Gödel t-norm over 
the interval [0, 1]. Clearly, due to the different semantics in these logics, the construction of the automata for fuzzy DLs is more 
involved than for the classical case. In this paper we provide an overview of the existing automata-based methods for reasoning in 
fuzzy DLs, with a special emphasis on explaining the ideas and the requirements behind them. The methods vary from deciding 
emptiness of automata on infinite trees to inclusions between automata on finite words. Overall, we provide a comprehensive 
perspective on the automata-based methods currently in use, and the many complexity results obtained through them.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Web Ontology Language OWL 21 has been widely used to formulate many different ontologies, with a par-
ticular concern in the biomedical sciences and healthcare systems, as evidenced by the large ontology repository 
BioPortal.2 This is due in no small part to the well-defined formal semantics of OWL 2 DL and its tractable profiles, 
which are provided by Description Logics (DLs) [1] of different expressivity, and the existence of many highly op-
timized reasoning systems for DLs.3 OWL 2 DL and its profiles provide the flexibility for handling many different 
ontology development needs, and existing ontologies cover the whole range, from very large ontologies written over 
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a very inexpressive language, like SNOMED CT,4 to more specialized ones describing complex interactions between 
concepts.

In description logics, knowledge is represented using concepts describing sets of objects, such as Fever and Male, 
and roles that draw connections between objects, such as hasSymptom and hasParent. Formally, concepts correspond 
to unary predicates from first-order logic, while roles are binary predicates. In DLs, complex concepts are usually 
built from two disjoint sets of concept names and role names using concept constructors. The specific DL used, and 
hence its expressivity, is determined by the choice of constructors allowed.

The ontology itself expresses the domain knowledge through a finite set of axioms that restrict the way in which 
concepts may be interpreted, and state some explicit knowledge about the individuals populating the domain. For 
example, the general concept inclusion

∀hasParent.∃hasBloodType.TypeO � ∃hasBloodType.TypeO,

expresses that people whose parents both have blood type O must also have the same blood type. Similarly, the 
assertions

hasBloodType(henry,t) and TypeA(t)

state that the individual Henry has a blood type that can be classified as type A. Along with this explicitly represented 
knowledge, many implicit consequences can be derived from a given ontology. One of the main goals in DLs is to 
devise and implement efficient reasoning methods that can extract this implicit knowledge in an automated manner.

Since they attempt to model the real world, in biomedical ontologies it is common to find concepts such as 
HighConcentration (GALEN5) and LowFrequency (SNOMED CT) for which no precise definition can be given. For 
instance, there is no precise point at which a concentration stops being normal to become high. Fuzzy DLs have been 
introduced as knowledge representation formalisms capable of handling imprecise concepts, as well as imprecise 
knowledge. To achieve this, they introduce more than two degrees of truth, allowing for a more fine-grained analysis 
of interactions between such vague concepts. For example, given the knowledge

∃hasDisease.Influenza � ∃hasSymptom.Fever � ∃hasSymptom.Headache

that influenza induces the symptoms fever and headache, it makes sense to say that a lower degree of fever indicates 
a less severe case of influenza, which is modeled by using a lower degree of truth.

Fuzzy DLs are based on fuzzy set theory [2] and mathematical fuzzy logic [3]. Usually, the set of truth degrees 
is the interval [0, 1] of real numbers, and thus a statement can be true to some intermediate degree, e.g. 0.5, instead 
of only completely true (1) or completely false (0). The logical constructors such as conjunction and implication are 
then generalized to this extended set of truth degrees. The oldest and most popular fuzzy semantics, the so-called 
Zadeh semantics, is based on the minimum function to interpret conjunction, the maximum function for disjunction, 
1 − x for the negation ¬x, and the Kleene–Dienes-implication max{1 − x, y} for the implication x → y. The latter is 
derived from the classical equivalence of x → y and ¬x ∨ y. However, this choice of implication function has some 
unintuitive consequences [4]. This is particularly unfortunate in the context of description logics since they make 
heavy use of implications in the axioms (�) and some constructors.

An alternative approach with a deeper formal motivation uses arbitrary t-norms, which satisfy only some basic 
properties, as interpretation functions for the conjunction [5]. The implication is then evaluated using the residuum of 
such a t-norm. The minimum function is a t-norm, also called the Gödel t-norm, but there are infinitely many others. 
Unfortunately, using t-norm based semantics for fuzzy DLs turned out to be problematic, with very inexpressive DLs 
losing their tractability [6], and slightly more expressive logics becoming undecidable [7–10]. Two possible ways 
to avoid this problem that have been identified are to restrict the semantics either to the (relatively) harmless Gödel 
t-norm or to a finite set of truth degrees.

Automata-based methods have proven to be very useful tools for finding tight bounds for the complexity of rea-
soning in DLs and other logics [11–13]. In a nutshell, automata provide an elegant and complexity-wise efficient 
formalism for handling complex, potentially infinite, models. Very recently, the ideas developed for the classical case 
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