Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

On S-homogeneity property of seminormed fuzzy integral: An answer to an open problem

Michał Boczek, Marek Kaluszka*

Institute of Mathematics, Lodz University of Technology, Lodz 90-924, Poland

ARTICLE INFO

Article history: Received 20 January 2015 Revised 23 July 2015 Accepted 9 August 2015 Available online 13 August 2015

Keywords: Generalized Sugeno integral Fuzzy integrals Seminorm Semicopula Capacity Monotone measure

ABSTRACT

We give an answer to Problem 9.3 stated by Mesiar and Stupňanová [8]. We show that the class of semicopulas solving this problem contains any associative semicopula S such that for each $a \in [0, 1]$ the function $x \mapsto S(a, x)$ is continuous and increasing on a countable number of intervals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, \mathcal{A}) be a measurable space, where \mathcal{A} is a σ -algebra of subsets of a non-empty set X, and let \mathcal{S} be the family of all measurable spaces. The class of all \mathcal{A} -measurable functions $f: X \to [0, 1]$ is denoted by $\mathcal{F}_{(X, \mathcal{A})}$. A *capacity* on \mathcal{A} is a non-decreasing set function $\mu: \mathcal{A} \to [0, 1]$ with $\mu(\emptyset) = 0$ and $\mu(X) = 1$. We denote by $\mathcal{M}_{(X, \mathcal{A})}$ the class of all capacities on \mathcal{A} .

Suppose that $S : [0, 1]^2 \rightarrow [0, 1]$ is a non-decreasing function in both coordinates with neutral element 1, called a *semicopula*, a *conjunctor* or a *t-seminorm* (see [2,3]). It is clear that $S(x, y) \le x \land y$ and S(x, 0) = 0 = S(0, x) for all $x, y \in [0, 1]$. We denote the class of all semicopulas by \mathfrak{S} . Typical examples of semicopulas include: $M(a, b) = a \land b$, $\Pi(a, b) = ab$, $S(x, y) = xy(x \lor y)$ and $S_L(a, b) = (a + b - 1) \lor 0$; S_L is called the *Łukasiewicz t-norm* [6]. Hereafter, $a \land b = \min(a, b)$ and $a \lor b = \max(a, b)$. The generalized Sugeno integral is defined by

$$\mathbf{L}_{\mathbf{r}}(\boldsymbol{\mu}, \mathbf{f}) := \sup_{\boldsymbol{h} \in \mathcal{H}} S(t, \boldsymbol{\mu}(\{\mathbf{f} > t\}))$$

$$\operatorname{I}_{S}(\mu, f) := \sup_{t \in [0,1]} S(t, \mu(\{f \ge t\}))$$

where $\{f \ge t\} = \{x \in X : f(x) \ge t\}$, $(X, A) \in S$ and $(\mu, f) \in \mathcal{M}_{(X,A)} \times \mathcal{F}_{(X,A)}$. In the literature, I_S is also called the *seminormed fuzzy integral* [4,7,9]. Replacing semicopula S with M, we get the *Sugeno integral* [11]. Moreover, if $S = \Pi$, then I_{Π} is called the *Shilkret integral* [10].

Below we present Problem 9.3 from [8], which was posed by Hutník during *The Twelfth International Conference on Fuzzy Set Theory and Applications* held from January 26 to January 31, 2014 in Liptovský Ján, Slovakia.

http://dx.doi.org/10.1016/j.ins.2015.08.010 0020-0255/© 2015 Elsevier Inc. All rights reserved.

CrossMark

^{*} Corresponding author. Tel.:+48 42 6313859; fax: +48 42 6363114. *E-mail address:* kaluszka@p.lodz.pl (M. Kaluszka).

Problem 9.3 To characterize a class of semicopulas S for which the property

 $(\forall_{a \in [0,1]}) \quad \mathbf{I}_{\mathbf{S}}(\mu, \mathbf{S}(a, f)) = \mathbf{S}(a, \mathbf{I}_{\mathbf{S}}(\mu, f))$

holds for all $(X, \mathcal{A}) \in S$ and all $(\mu, f) \in \mathcal{M}_{(X, \mathcal{A})} \times \mathcal{F}_{(X, \mathcal{A})}$.

Hutník et al. [5,8] conjectured that (1) characterizes the two element class {M, Π }. We show that (1) holds for any associative semicopula with continuous selections satisfing some mild conditions.

2. Main results

Let \mathfrak{S}_0 denote the set of all semicopulas S which fulfill the following two conditions:

- (C1) S is associative, i.e. S(S(x, y), z) = S(x, S(y, z)) for all $x, y, z \in [0, 1]$,
- (C2) $[0, 1] \ni x \mapsto S(a, x)$ is continuous for each $a \in (0, 1)$.

The class \mathfrak{S}_0 is non-empty as M, Π , $S_L \in \mathfrak{S}_0$. If we additionally assume that the function $[0, 1] \ni a \mapsto S(a, x)$ is continuous for each $x \in (0, 1)$, then S is a continuous *t*-norm (see [1], Corollary 2.4.4, or [6], Theorem 2.43). It is an open problem whether \mathfrak{S}_0 contains only continuous *t*-norms.

We prove that the property (1) implies that $S \in \mathfrak{S}_0$.

Theorem 2.1. If (1) holds for all $(X, \mathcal{A}) \in S$ and all $(\mu, f) \in \mathcal{M}_{(X,\mathcal{A})} \times \mathcal{F}_{(X,\mathcal{A})}$, then $S \in \mathfrak{S}_0$.

Proof. The equality (1) is obvious for $a \in \{0, 1\}$, so we assume that $a \in (0, 1)$. First, we show that (1) implies that S is an associative semicopula. Indeed, put $f = b\mathbb{1}_A$ in (1), where $b \in [0, 1]$ and $A \in A$. Then (1) takes the form

$$\sup_{t\in[0,1]} \mathsf{S}(t,\mu(A\cap\{\mathsf{S}(a,b)\ge t\})) = \mathsf{S}\left(a,\sup_{t\in[0,1]}\mathsf{S}(t,\mu(A\cap\{b\ge t\}))\right)$$

Clearly, $\{S(a, b) \ge t\} = X$ and $\{b \ge t\} = X$ for $t \in [0, S(a, b)]$ and $t \in [0, b]$, respectively. Otherwise, both sets are empty. Hence

$$\sup_{t\in[0,S(a,b)]} \mathsf{S}(t,\mu(A)) = \mathsf{S}\left(a,\sup_{t\in[0,b]}\mathsf{S}(t,\mu(A))\right)$$

Since S is non-decreasing, we get

S(S(a, b), c) = S(a, S(b, c))

for all $a \in (0, 1)$ and $b, c \in [0, 1]$. The equality (2) holds also for $a \in \{0, 1\}$, so S is associative.

Second, we prove that (C2) follows from (1) or, equivalently, that the following conditions are satisfied:

(C2a) $x \mapsto S(a, x)$ is right-continuous for each $a \in (0, 1)$, (C2b) $x \mapsto S(a, x)$ is left-continuous for each $a \in (0, 1)$.

Denote by L and P the left-hand side and the right-hand side of Eq. (1), respectively. Let X = [0, 1]. Putting $\mu(A) = 0$ for $A \neq X$ yields

$$L = \sup_{t \in [0, \inf_x S(a, f(x))]} S(t, 1) = \inf_{x \in [0, 1]} S(a, f(x)),$$

P = S(a, sup _{z \in [0, \inf_x f(x)]} S(z, 1)) = S(a, inf _{x \in [0, 1]} f(x))

Let $b_n \searrow b$ for a fixed $b \in [0, 1)$ and $f(x) = b_n \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$ for $x \in (0, 1)$ with f(0) = f(1) = 1. Hereafter, $a_n \searrow a$ means that $\lim_{n \to \infty} a_n = a$ and $a_n > a_{n+1}$ for all n. Since L = P, P = S(a, b) and

 $\mathsf{L} = \inf_{x \in [0,1]} \mathsf{S}(a, f(x)) = \lim_{n \to \infty} \mathsf{S}(a, b_n),$

the condition (*C*2*a*) is satisfied. Now we show that (*C*2*b*) is fulfilled. Set $\mu(A) = 1$ for all $A \neq \emptyset$. Obviously,

$$L = \sup_{t \in [0, \sup_{x} S(a, f(x))]} S(t, 1) = \sup_{x \in [0, 1]} S(a, f(x)), \quad P = S\left(a, \sup_{x \in [0, 1]} f(x)\right).$$

Let $b_n \nearrow b$ for some $b \in (0, 1]$, $f(x) = b_n \mathbb{1}_{[\frac{1}{n+1}, \frac{1}{n})}(x)$ for $x \in (0, 1)$ and f(0) = f(1) = 0. Since L = P, P = S(a, b) and $L = \sup_{x \in [0,1]} S(a, f(x)) = \lim_{n \to \infty} S(a, b_n)$, we obtain the condition (*C2b*). \Box

Next, we show that under an additional assumption on S, the condition $S \in \mathfrak{S}_0$ is necessary and sufficient for (1) to hold. To prove our result we need the following lemma.

Lemma 2.1. Suppose g, $h : [0, 1] \rightarrow [0, 1]$ and g is non-decreasing.

- (a) If g is right-continuous, then $g(\inf_{x \in [0,1]} h(x)) = \inf_{x \in [0,1]} g(h(x))$.
- (b) If g is left-continuous, then $g(\sup_{x \in [0,1]} h(x)) = \sup_{x \in [0,1]} g(h(x))$.

(2)

(1)

Download English Version:

https://daneshyari.com/en/article/391849

Download Persian Version:

https://daneshyari.com/article/391849

Daneshyari.com