
A high performance memetic algorithm for extremely
high-dimensional problems

Miguel Lastra a,⇑, Daniel Molina b, José M. Benítez c

a Depto. Lenguajes y Sistemas Informáticos, E.T.S. Ingeniería Informática y Telecomunicación, CITIC-UGR, iMUDS, Universidad de Granada, Spain
b Depto. Ingeniería Informática, E.S. Ingeniería, Universidad de Cádiz, Spain
c Depto de Ciencias de la Computación e Inteligencia Artificial, E.T.S. Ingeniería Informática y Telecomunicación, CITIC-UGR, iMUDS, Universidad de Granada, Spain

a r t i c l e i n f o

Article history:
Received 3 August 2013
Received in revised form 3 August 2014
Accepted 12 September 2014
Available online 22 September 2014

Keywords:
Memetic algorithm
Optimization problem
GPU
CUDA

a b s t r a c t

Throughout the last years, optimization problems on a large number of variables, sometimes
over 1000, are becoming common. Thus, algorithms that can tackle them effectively, both in
result quality and run time, are necessary. Among these specific algorithms for high-dimen-
sional problems, memetic algorithms, which are the result of the hybridization of an evolu-
tionary algorithm and a local improvement technique, have arisen as very powerful
optimization systems for this type of problems. A very effective algorithm of this kind is
the MA-SW-Chains algorithm. On the other hand, general purpose computing using Graphics
Processing Units (GPUs) has become a very active field because of the high speed-up ratios
that can be obtained when applied to problems that exhibit a high degree of data parallelism.

In this work we present a new design of MA-SW-Chains to adapt it to the GPU-based
massively parallel architecture. The experiments with the new GPU memetic technique,
compared to the original sequential version, prove that the results are obtained with the
same quality but with a reduction of the run time of two orders of magnitude. This great
improvement in computing time makes our proposal suitable for future optimization
problems with a dimensionality several orders of magnitude greater than current high-
dimensionality standards (i.e. problems with millions of variables). The remarkable run time
reduction comes at the cost of a higher design and implementation overhead compared to
the CPU-based single-threaded counterpart.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary Algorithms (EAs) [3] are meta-heuristic techniques that have arisen as very good algorithms for optimiza-
tion problems. These algorithms can be applied to a variety of real-world optimization problems because they do not require
specific information about the problem at which they are targeted, obtaining very good results in optimization problems
with computing and/or run time restrictions. Furthermore, they have shown considerable success in dealing with problems
characterized by complex solution spaces.

To improve the effectivity of the search process an EA can be hybridized with a local improvement method. Memetic
Algorithms (MAs) [35,36] are extensions of EAs with a separate local search process (LS) that improves the optimization
process [29]. MAs are simple but flexible and powerful algorithms [32,41] that find high-quality solutions in many real-word
problems [12,25,53].

http://dx.doi.org/10.1016/j.ins.2014.09.018
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +34 958246144.
E-mail addresses: mlastral@ugr.es (M. Lastra), daniel.molina@uca.es (D. Molina), J.M.Benitez@decsai.ugr.es (J.M. Benítez).

Information Sciences 293 (2015) 35–58

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.09.018&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.09.018
mailto:mlastral@ugr.es
mailto:daniel.molina@uca.es
mailto:J.M.Benitez@decsai.ugr.es
http://dx.doi.org/10.1016/j.ins.2014.09.018
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


Nowadays, it is very common to face real-world problems which require optimizing a rising number of variables. Typical
optimization problems involve tens of variables. However, in research fields that have a growing interest it became obvious
that a larger number of variables is required, leading to high-dimensional optimization problems: in data mining problems,
by the huge size of available data (such as clustering in text analysis [31,6]); biomedical problems as in DNA and molecular
simulation [27,65,4]; networking problems [54,18]. In fact, the requirement of high-dimensional algorithms is increasing
and currently it is not unusual to tackle problems represented by a very high number of dimensions (over 106) like feature
selection techniques [24], molecular simulation [65] or forecasting [38]. With the appearance of big data the number of
huge-scale optimization problems (above dimension 108) is growing, as complex simulation [13], data mining [1], quantum
chemistry [46], spectroscopy analysis [44], geophysical analysis [7], drug discovery [17], genomic studies [47], etc.

Optimization of high-dimensional problems, also called large-scale optimization, implies a higher complexity in EAs, not
only because many techniques are not suitable for higher dimensions but because the error increases with dimensionality.
EAs try to achieve a compromise between accuracy and invested effort (in terms of number of evaluations or run time), thus,
when applied to high-dimensional problems, EAs do not always produce good results in an affordable time.

High-dimensional optimization problems have several characteristics that makes them difficult to solve. First, when the
dimensionality increases the search domain size increases exponentially, while the number of evaluations that can be
performed usually increases lineally as computational resources are added. Also, techniques that use gradient information
(or approximation, such as Quasi-Newton techniques), present problems in high-dimensional systems [55]. Additionally,
proximity and neighborhood relationships are difficult to assess because, although it is widely used, the Euclidean distance
may not be an appropriate measure in high-dimensional problems [1].

In recent years different EAs specifically designed for large-scale optimization have been proposed to tackle the afore-
mentioned issues. In particular, MAs have proven to be very competitive in this field because they are based on stochastic
algorithms that do not require any gradient information and because the use of LS methods may improve the performance of
the algorithm by quickly exploring around the best solutions (especially useful in high-dimensions). Unfortunately, applying
traditional LS techniques to high-dimensional problems increases the computational intensity because of the high number of
variables and the additional fitness function evaluations added by the local search process. MA-SW-Chains [34] is a specially
interesting MA because it allows a greater computational intensity to be applied only to the most promising solutions until
they do not improve, while maintaining a fixed effort ratio (ratio of number of evaluations) invested in the LS method. With
this combination the algorithm exhibits a good trade-off between exploration and exploitation in high-dimensional
problems. The fact that MA-SW-Chains was the winner of the large-scale global optimization session in the IEEE Congress
on Evolutionary Computation in 2010 proves it is a very competitive algorithm in this field.

However, MA-SW-Chains is a sequential algorithm, where the process is run by one CPU and each step of the algorithm is
run after the previous one. On the other hand, parallel algorithms are able to perform several computations at the same time
and can greatly reduce the required processing time. For high-dimensional optimization problems this kind of algorithms are
specially interesting because they could reduce the high computing time due to the huge amount of variables [2,43,45].

One parallel architecture that has obtained very good results for certain kind of parallel algorithms is the one provided by
Graphics Processing Units (GPUs). General Purpose computation on GPUs (GPGPU) allows algorithms to perform parallel
computations over different data using the general purpose computing capabilities of modern GPUs. Recently, several
parallel EAs for optimization using GPUs have been published, as Particle Swarm Optimizations (PSO) [11] or Differential
Evolution (DE) [26,20].

In this work we propose a GPU-based design and implementation of the MA-SW-Chains algorithm. The objective we have
sought was to improve the performance of this algorithm to make it adequate for huge-dimensional problems without
reducing the quality of the results.

The GPU version of MA-SW-Chains is compared to the original version over several well-known optimization problems
which are frequently used in different high-dimensional benchmarks. This empirical study includes both the run time and
error measure analysis. Furthermore, the scalability achieved using GPUs is also studied and experiments are not limited to
usual high-dimensional values in the order of 1000 variables and reach dimensionality values up to 3,000,000. The goal was
to analyze if GPU-based implementations could be ready even for future high-dimensional problems. The results that were
obtained show that GPUs allow tackling optimization problems with dimensionality levels not affordable with the original
MA-SW-Chains version in a reasonable time.

This paper has the following structure: in Section 2, GPGPU programming is introduced, in Section 3, a brief review of EAs
designed for high-dimensionality, paying special attention to memetic algorithms, is shown. In Section 4 the original
MA-SW-Chains algorithm is explained. In Section 5, our parallel algorithm is described, remarking the differences with
respect to the CPU version. In Section 6, the experiments using the GPU and CPU version are presented. Finally, in Section 7
the results are analyzed and in Section 8 the main conclusions and future work are detailed.

2. GPGPU programming

The GPGPU computation discipline (General Purpose computation on Graphics Processing Units) has been a very active
research topic in the last years, especially since computing frameworks such as CUDA [14] or openCL [42] were introduced.
These platforms have allowed using the great computing capabilities of modern Graphics Processing Units for general

36 M. Lastra et al. / Information Sciences 293 (2015) 35–58



Download English Version:

https://daneshyari.com/en/article/392315

Download Persian Version:

https://daneshyari.com/article/392315

Daneshyari.com

https://daneshyari.com/en/article/392315
https://daneshyari.com/article/392315
https://daneshyari.com

