Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Comment on "An algorithm for solving optimization problems with fuzzy relational inequality constraints"

Xue-Gang Zhou^a, Xiao-Peng Yang^b, Bing-Yuan Cao^{c,*}

^a Department of Applied Mathematics, Guangdong University of Finance, Guangzhou, Guangdong,510521, China ^b Department of Mathematics and Statistics,Hanshan Normal University, Chaozhou, Guangdong 521041, China ^c Guangzhou Vocational College of Science and Technology, Guangzhou, Guangdong, 510550, China

ARTICLE INFO

Article history: Received 19 April 2015 Revised 4 July 2016 Accepted 21 July 2016 Available online 28 July 2016

Keywords: Linear programming Fuzzy relational inequality

ABSTRACT

A counterexample is provided to illustrate the incorrectness of I^0 in Rule 1 presented by Guo et al. [F.F. Guo, L.P. Pang, D. Meng, Z.Q. Xia. An algorithm for solving optimization problems with fuzzy relational inequality constraints, Information Sciences 252 (2013) 20-31]. In other words, (7b) and (7b*) in the referenced paper above are not equivalent unless index set I^0 is revised, since the definition of I^0 in Rule 1 can only be correct when the constraints are fuzzy relational equations. And finally the correct of I^0 is also presented in this note.

© 2016 Published by Elsevier Inc.

1. Introduction

The definition of I^0 in Rule 1 given by Guo et al. [1] can only be correct correct when the constraints are fuzzy relational equations. It follows that (7b) and (7b^{*}) in Ref. [1] are not equivalent unless index set I^0 is revised. A counterexample is given below for the case of fuzzy relational inequality constraints.

Example. Consider the following problem,

min $f(x) = 3x_1 + 4x_2 - x_3 + x_4 + 2x_5 - 5x_6$ s.t. $A \circ x \ge b$, $B \circ x \le d$, $x \in [0, 1]^n$

where

	0.5	0.8	0.9	0.3	0.85	0.4		0.4	0.7	0.95	0.4	0.9	0.5	Ĺ
<i>A</i> =	0.2	0.2	0.1	0.95	0.1	0.8	, <i>B</i> =	0.3	0.3	0.2	1.0	0.2	0.85	
	0.8	0.8	0.4	0.1	0.1	0.1		0.8	0.75	0.3	0.2	0.2	0.2	
	0.1	0.1	0.1	0.1	0.1	0.0		0.2	0.0	0.0	0.2	0.0	0.0	
$b = [\overline{0}.85 \ 0.6 \ 0.5 \ 0.1]^T, d = [0.9 \ 0.8 \ 0.7 \ \overline{0}.2]^T.$														

* Corresponding author.

E-mail address: caobingy@163.com (B.-Y. Cao).

http://dx.doi.org/10.1016/j.ins.2016.07.050 0020-0255/© 2016 Published by Elsevier Inc.

CrossMark

(1)

Step 1. Compute the maximum feasible solution \bar{x} by, for any $j \in \{1, 2, 3, 4, 5, 6\}$,

$$\bar{x}_{j} = \begin{cases} \min\{d_{i}|b_{ij} > d_{i}, i \in L\}, & \text{if } \{d_{i}|b_{ij} > d_{i}, i \in L\} \neq \emptyset, \\ 1, & \text{if } \{d_{i}|b_{ij} > d_{i}, i \in L\} = \emptyset. \end{cases}$$

We have $\bar{x} = (0.7 \ 0.7 \ 0.9 \ 0.8 \ 1.0 \ 0.8)^T$ and $A \circ \bar{x} \ge b$, then go to Step 2.

Step 2. Obviously, $J^0 = \{3, 6\}$, $I^0 = \{4\}$ on the basis of $J^0 = \{j \in J | c_j \leq 0\}$ and $I^0 = \{i \in I | \exists j \in J^0 \text{ such that } \min\{a_{ij}, \bar{x}_j\} = b_i\}$. By Rule 1, we can set $x_3^* = \bar{x}_3 = 0.9$, $x_6^* = \bar{x}_6 = 0.8$, and delete columns 3 and 6 of *A* and eliminate the fourth constraint of $A \circ x \geq b$. So, $\bar{I} = \{1, 2, 3\}$, $\bar{J} = \{1, 2, 4, 5\}$. Then, problem (1) is converted into the following one,

(2)

$$\begin{array}{ll} \min & Z = z(x) = 3x_1 + 4x_2 + x_4 + 2x_5 - 4.9 \\ \text{s.t.} & A' \circ x \geqslant b', \\ & 0 \leqslant x_i \leqslant \bar{x}_i, \quad j \in \bar{J}, \end{array}$$

where $b' = [0.85 \ 0.6 \ 0.5]^T$ and

$i \setminus j$	1	2	4	5	
1	[0.5	0.8	0.3	0.85	
$A' = \frac{1}{2}$	0.2	0.2	0.95	0.1	
3	0.8	0.8	0.1	0.1	

By virtue of $I_j := \{i \in \overline{I} | \min\{a_{ij}, \overline{x}_j\} \ge b_i\}$ and $J_i := \{j \in \overline{J} | \min\{a_{ij}, \overline{x}_j\} \ge b_i\}$, we calculate index sets $I_j (j \in \overline{J})$ and $J_i (i \in \overline{I})$ as follows:

$$\begin{split} I_1 &= \{3\}, I_2 = \{3\}, I_4 = \{2\}, I_5 = \{1\}, \\ J_1 &= \{5\}, J_2 = \{4\}, J_3 = \{1, 2\}. \end{split}$$

Step 3. Rule 2 cannot be applied. Due to Rule 3 and $c_1 < c_2$, $l_1 = l_2$, set $x_2^* = 0$ and reduce the constraints by removing the second column of A'.

Step 4. We can generate an optimal solution $x^* = [0.5 \ 0.0 \ 0.9 \ 0.6 \ 0.85 \ 0.8]^T$ directly with its optimal value being $f(x^*) = -1.1$.

However, $x^0 = [0.5 \ 0.0 \ 0.9 \ 0.0 \ 0.85 \ 0.8]^T$ is a feasible solution to problem (1) and $f(x^0) = -1.7 < f(x^*)$.

Why? In Step 2, we should delete constrains 1 and 2 since these in $A \circ x \ge b$ have been satisfied actually by setting $x_3 = 0.9$ and $x_6 = 0.8$ and need not to be satisfied again by setting $x_4 = 0.6$ and $x_5 = 0.85$. That's the reason why a wrong optional solution is got. Why don't we delete the constraints 1 and 2? The main reason is because of the definition of $I^0 = \{i \in I | \exists j \in J^0 \text{ such that } \min\{a_{ij}, \bar{x}_j\} = b_i\}$. If the constraints are fuzzy relational equations $A \circ x = b$, the definition of I^0 is correct. We first consider a problem below,

$$\begin{array}{ll} \min & Z = z(x) = 3x_1 + 4x_2 + x_4 + 2x_5 - 4.9 \\ \text{s.t.} & A \circ x \geqslant b, \\ & 0 \leqslant x_i \leqslant \bar{x}_i, \quad j \in J, \end{array}$$

$$(3)$$

where *A* and *b* are the same as in (1). Obviously one of minimal solutions \underline{x} is an optimal one to (3). From Theorem 3 of [1], there must exist an FRI path *p* such that $\underline{x} = x^p$, where x^p is denoted by (5) of [1]. Compute index sets $J_i(i \in I)$ by $J_i := \{j \in J | \min\{a_{ij}, \bar{x}_i\} \ge b_i\}$,

$$J_1 = \{3, 5\}, J_2 = \{4, 6\}, J_3 = \{1, 2\}, J_4 = \{1, 2, 3, 4, 5\}.$$

By Rule 2 of [1] and $J_1 \subseteq J_4$, it has no effect on the optimal solution of (3) by deleting J_4 . In order to get an optimal solution of (3), we must choose $p_1 = 3$ and $p_2 = 6$ from J_1 and J_2 , since $c_3 = c_6 = 0$ and $c_4 > 0$, $c_5 > 0$. Due to Rule 3 and $c_1 < c_2$, $J_1 = I_2$, set $p_3 = 1$. Thus, $x^* = x^p = [0.5 \ 0.0 \ 0.85 \ 0.0 \ 0.0 \ 0.6]^T$. It follows from Theorem 3 of [1] that an optimal solution to (1) is $x^* = [0.5 \ 0.0 \ 0.0 \ 0.8]^T$.

From the discussion above, we see that it has no effect on the optimal solution to (3) by removing J_1 and J_2 or 1 and 2 constraints of problem (1). However, we can not delete constraints 1 and 2 by Rule 1 since $a_{13} \wedge \bar{x}_3 \neq b_1$, $a_{16} \wedge \bar{x}_6 \neq b_1$, $a_{23} \wedge \bar{x}_3 \neq b_2$, $a_{26} \wedge \bar{x}_6 \neq b_2$, that is, $1, 2 \notin I^0$.

Download English Version:

https://daneshyari.com/en/article/392463

Download Persian Version:

https://daneshyari.com/article/392463

Daneshyari.com