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a b s t r a c t 

The computation of a minimal separating automaton (MSA) for regular languages has been 

studied from many different points of view, from synthesis of automata or Grammatical In- 

ference to the minimization of incompletely specified machines or Compositional Verifica- 

tion. In the general case, the problem is NP-complete, but this drawback does not prevent 

the problem from having a real application in the above-mentioned fields. In this paper, 

we propose a sufficient condition that guarantees that the computation of the MSA can be 

carried out with polynomial time complexity. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this work, we study the problem of computing a minimal separating automaton (MSA) for regular languages. This 

problem has been studied from many different points of view. We note that, in the general case, the decision problem is 

NP-complete. This complexity result can be derived from the results on synthesis of automata by Trakhtenbrot and Barzdin 

[30] , who also state a (strict) condition that guarantees polynomial computation. In the Grammatical Inference (GI) frame- 

work, Gold proves in [14] that the decision problem of obtaining a DFA with a given number of states that is compatible 

with a finite (positive and negative) sample is NP-complete. In the same GI framework, Angluin proves in [1] that even a 

small modification of the condition stated by Trakhtenbrot and Barzdin implies that the problem is NP-complete. Also, in 

[25] , Pfleeger studies the complexity of the minimization of incompletely specified finite state machines obtaining the same 

complexity bound. 

Briefly speaking, all of these problems can be enunciated as the problem of computing (given any two (regular) languages 

L + and L −) an automaton with the smallest number of states that accepts the strings in L + and rejects all the strings in 

L − (the behavior of the automaton with respect to the strings not in L + ∪ L − is irrelevant). Despite the exponential time 

complexity in the worst case of the general problem, in our work we prove a sufficient condition that guarantees that the 

computation can be carried out with polynomial time complexity. 

One of the first approaches to the problem was presented by Trakhtenbrot and Barzdin [30] , where the authors study 

the problem of computing the minimum deterministic finite automaton ( DFA ) which is consistent with respect to a finite 

set of strings of a target language and its complement. In their work, the authors prove that the DFA can be obtained with 
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polynomial complexity whenever a uniformly-complete sample is available (a sample that exclusively contains every string 

over the alphabet up to a given length). 

Several authors study the computation of the minimal cover-automaton as a compact representation of a finite set of 

strings over an alphabet [6,7,18] . Taking into account the results by Trakhtenbrot and Barzdin, the computation of the min- 

imal cover-automaton can be stated as the problem of obtaining the minimum DFA such that L + is finite and L − is the 

language that contains the strings not in L + whose length is lower than or equal to an integer n that denotes the length of 

the longest string in L + . This allows the finite set L + to be described by using the cover-automaton obtained together with 

n . 

As mentioned above, another problem that is related to the computation of the MSA is the minimization of incompletely 

specified state machines, where incomplete means that either the transition function or the membership of some states to 

the set of accepting states is undefined. Thus, by taking into account the result of the analysis of any given string using 

an incompletely specified machine, it is possible to distinguish a set of strings that are accepted, a set of strings that are 

rejected, and a third set of strings that can either be accepted or rejected. Among the different approaches to the problem, in 

[22] , the authors address the task by enumerating the possible reductions of the input machine and selecting the minimum 

one. Despite its complexity, the method has been used recently (i.e., in [8] ). In the context of circuit design, in [27] propose 

exact methods (based on the computation of sets of compatible states) as well as heuristics. In [23] , in a more general 

approach, Pena and Oliveira propose a method that takes into account previous GI methods. With the exception of the 

heuristics proposed, none of the enumerated works bypass the exponential complexity of the problem. 

In some circumstances, the use of state machines in the modeling of algorithms, sequential logic circuits and communi- 

cation protocols allows the verification of the system to be reduced to the computation of a MSA. Compositional verification 

is one of these approaches and is considered to be a way to scale up Model Checking [9] . Once two components M 1 and M 2 

and the property P (to hold) are characterized by means of regular languages, it is possible to check that the composition 

of M 1 and M 2 (the intersection of the component languages) fulfills the property (the intersection is a sublanguage of L ( P )) 

if there is a contextual assumption A such that the following inference rule is satisfied: 

L (M 1 ) ∩ L (A ) ⊆ L (P ) L (M 2 ) ⊆ L (A ) 

L (M 1 ) ∩ L (M 2 ) ⊆ L (P ) 

The main drawback of applying this assume-guarantee rule is the need for expert knowledge in order to obtain the contextual 

assumptions, while the minimality of the assumption model is important in terms of performance [8] . When regular models 

are considered, this approach to Model Checking can be reduced to the problem of finding the MSA for the languages L ( M 2 ) 

(which plays the role of L + ) and L (M 1 ) − L (P ) (which plays the role of L −). 

Among the results in this field, in [15] , the authors address the task in the context of the design of logic circuits and 

propose a heuristic that iteratively constructs a contradicting sequence that is used to find incompatible states. In [8] , the 

authors use a version of the L ∗ algorithm by Angluin [2] in order to obtain an incompletely specified state machine that is 

then reduced by using the algorithm proposed in [22] . In [21] , Neider addresses the problem by representing the desired 

properties of the DFA in terms of a logical formula and using standard SAT or SMT solvers to find a solution. 

As mentioned above, the goal of Grammatical Inference is to obtain the MSA in the special case of two finite languages 

L + and L −. Despite the negative results related to the complexity of the problem [1,14] , recent work in this field proves that 

it is possible to relax the uniformly-complete criterion in order to compute the minimal consistent DFA with polynomial 

complexity [31] . Related work in the same field of Grammatical Inference allows to propose a heuristic to compute a small 

DFA that is consistent with a finite input by inferring a team of automata using different order-criteria on the prefix tree 

acceptor for the sample and selecting the smallest DFA obtained [12] . 

In this paper, we study the conditions that allow the MSA with polynomial complexity to be obtained. We prove a 

sufficient condition over the whole set of strings that are involved in the problem that guarantees that the process can be 

carried out with polynomial time complexity. Because the condition we propose takes into account the strings in the union 

of the sets L + and L −, for the sake of simplicity (and without lack of generality), we state this problem as the following 

task: given two regular languages L + and L ∪ , where L + ⊆ L ∪ , compute a minimal DFA that accepts the strings in L + and 

rejects the strings in L ∪ − L + with polynomial time complexity (i.e., the search of a DFA that separates L + and L ∪ − L + ). Any 

automaton that fulfills these conditions is considered to be consistent with respect to L + and L ∪ − L + . 

2. Notation and definitions 

In this section, we summarize the main definitions used in the paper. We recommend [16] to the reader for further 

notions or definitions. 

Let � be a finite alphabet and let �∗ be the set of strings over �, where λ denotes the empty word and | x | denotes 

the length of x (thus, | λ| = 0 ). A language L over � is any subset of �∗. Here we recall the definition of the canonical order 

over �∗ as being the order that first classifies the shorter strings and considers the alphabetic order for those strings of the 

same length. 

A (non-deterministic) finite automaton is a 5-tuple A = (Q, �, δ, I, F ) , where Q is a finite set of states, � is an alphabet, 

I ⊆Q is the set of initial states, F ⊆Q is the set of final states and δ: Q × � → 2 Q is the transition function, which can also 

be seen as a subset of Q × � × Q . The transition function can be extended in a natural way to �∗ as well as to 2 Q . Given 
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