
Information Sciences 364–365 (2016) 146–155

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A survey of randomized algorithms for training

neural networks

Le Zhang , P.N. Suganthan

∗

School of Electric and Electronic Engineering, NanYang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:

Received 10 April 2015

Revised 12 November 2015

Accepted 17 January 2016

Available online 23 January 2016

Keywords:

Randomized neural networks

Recurrent neural networks

Convolutional neural networks

Deep learning

a b s t r a c t

As a powerful tool for data regression and classification, neural networks have received

considerable attention from researchers in fields such as machine learning, statistics, com-

puter vision and so on. There exists a large body of research work on network training,

among which most of them tune the parameters iteratively. Such methods often suffer

from local minima and slow convergence. It has been shown that randomization based

training methods can significantly boost the performance or efficiency of neural networks.

Among these methods, most approaches use randomization either to change the data dis-

tributions, and/or to fix a part of the parameters or network configurations. This article

presents a comprehensive survey of the earliest work and recent advances as well as some

suggestions for future research.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inspired by biological Neural network, artificial neural network (ANN) is a family of non-parametric learning methods

for estimating or approximating functions that may depend on a large number of inputs and outputs. Typically, training

protocol of an ANN is based on minimizing a loss function defined on the desired output of the data and actual output of

the ANN through updating the parameters. Classical approaches usually tune the parameters based on the derivatives of the

loss function. However, much of the power of ANN comes from the nonlinear function in the hidden units used to model

the nonlinear mapping between the input and output. Unfortunately, this kind of architecture loses the elegance of finding

the global minimum solution with respect to all the parameters of the network since the loss function depends on the

output of nonlinear neurons. Thus, the optimization turns out to be nonlinear least square problem which is usually solved

iteratively. In this case, the error function has to be back propagated backwards to serve as a guidance for tuning the param-

eters [30] . Due to this, it is widely acknowledged that these training methods are very slow [38] and may not converge to a

single global minimum because there exist many local minima [29,53] and also the resulting neural network is very weak in

the real world noisy situations. These weaknesses of this family of methods naturally limit the applicability of gradient-based

algorithms for training neural networks. Randomization based methods remedy this problem by either randomly fixing the

network configurations (such as the connections) or some parts of the network parameters (while optimizing the rest by a

closed form solution or an iterative procedure), or randomly corrupt the input data or the parameters during the training.

Remarkable results have been achieved in various network structures, such as single hidden layer feed forward network [69] ,

∗ Corresponding author. Tel: +65 6705404; fax: +65 67933318.

E-mail address: epnsugan@ntu.edu.sg (P.N. Suganthan).

http://dx.doi.org/10.1016/j.ins.2016.01.039

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.01.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.01.039&domain=pdf
mailto:epnsugan@ntu.edu.sg
http://dx.doi.org/10.1016/j.ins.2016.01.039

L. Zhang, P.N. Suganthan / Information Sciences 364–365 (2016) 146–155 147

RBF neural networks [9] , deep neural network with multiple hidden layers [31] , convolutional neural network [43] and

so on.

A main goal of the paper is to show a role and a place of randomized methods in optimization based neural networks’

learning. In Section 2 , we present some early work on this line of research on perceptron and standard feed-forward neural

network with random parameters in the hidden neuron. Another piece of important work is Random Vector Functional

Link Network, which is described in Section 3 . Randomization based learning in RBF, recurrent neural network and deep

neural network are presented in Sections 4 , 5 , and 6 , respectively. We also offer some details on other scenarios such as

evolutionary learning in Section 7 . In Section 8 , we point out some research gap in the literature of randomization algorithm

for neural network training. Conclusions are presented in the last section.

2. Early works on perceptron and standard feed-forward neural network with randomization

The earliest attempt in this research area was the “perceptron” presented in [65] and extended in [10,66] . Generally

speaking, a perceptron consists of a retina of sensor units, associator and response units. The sensor units are connected

to the associator units in “random and many to many” manner. The associator units may connect to other associator units

and/or response units. When a stimulus (or the input data) is presented to the sensor units, impulses are conducted from

the activated sensor units to the associator units. The associator units are activated once the total arrived signals exceed a

threshold. In this case, an impulse from the associator will be send to the units which are connected with it. In perceptron,

the weights between the sensor units and the response units can be regarded as randomly selected from {1, 0}, while the

weights between the associator units and the response units are achieved by reinforcement learning.

In [69] , the authors investigated the performance of a standard feed-forward neural network (SLFN) which is demon-

strated in Fig. 1 . In this paper, the weights between the input layer and hidden layer are randomly generated and kept

fixed. The author reported that the weights between the output layer and hidden layer are of more importance and the

rests may not need to be tuned once they are properly initialized.

For a given classification problem with limited training data, there are numerous solutions with different parameter

setting which is statistically acceptable. In this case, training become much easier because the learning set is only needed

to make a rough selection in the parameter space. Setting the parameters in the hidden neurons randomly helps to remove

the redundancy of the solution in parameter space and thus makes the solution less sensitive to the resulting parameters

compared with other typical learning rule such as back-propagation. In [69] , the weights in hidden neurons are set to be

uniform random values in [−1 , +1] and they suggest to optimize this range in a more appropriate range for the specified

application. An alternative choice is to set the hidden neurons to act as “correlators”, which means to fix the weights in

hidden neuron with a random subset of the training data.

In [69] , the network’s output layer weights are optimized by minimizing the following squared error:

ε2 =

N ∑

i =1

(

y i −
k ∑

j=0

w j f i j

) 2

(1)

where N means the number of data samples and k is the number of hidden neurons. f ij is the activation values of the j th

neuron on the i th data sample (f i 0 is the bias). y i is the target of the i th data sample.

Denote by

F i = [f i 0 , f i 1 , . . . , f ik]
T (2)

Fig. 1. The structure of SLFN in [69] . x means the input feature. The arrows within the yellow rectangle represents the random weights (w

hidden) which

connect the input feature to the hidden neurons. Those arrows within the green rectangle are the output weights (w

out put) which need to be optimized. x 0 s
and f 0 s can be regarded as the bias term in the input and hidden layer. y is the desired output target. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/392567

Download Persian Version:

https://daneshyari.com/article/392567

Daneshyari.com

https://daneshyari.com/en/article/392567
https://daneshyari.com/article/392567
https://daneshyari.com

