
Reproducible experiments on dynamic resource allocation
in cloud data centers

Andreas Wolke a,n, Martin Bichler a, Fernando Chirigati b,1, Victoria Steeves b,1

a Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
b New York University, United States

a r t i c l e i n f o

Article history:
Received 28 September 2015
Accepted 30 December 2015
Available online 7 January 2016

Keywords:
Cloud computing
Dynamic resource allocation
Reproducibility

a b s t r a c t

In Wolke et al. [1] we compare the efficiency of different resource allocation strategies
experimentally. We focused on dynamic environments where virtual machines need to be
allocated and deallocated to servers over time. In this companion paper, we describe the
simulation framework and how to run simulations to replicate experiments or run new
experiments within the framework.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reproducibility is the ability of an entire experiment or
study to be duplicated, and it constitutes one of the main
principles of the scientific method. Research on resource
allocation in cloud computing largely consists of discrete
event simulations. The results are difficult to replicate and
hard to compare as they are typically based on different
assumptions and implementations. This not only hinders
progress, but it does also not allow for reliable results
expected by academics, practitioners, and other interested
parties. Twenty years ago Tichy et al. [2] criticized that “the
low ratio of validated results appears to be a serious
weakness in computer science research.”

Many academic fields have developed standards to
ensure reproducibility of their experiments. For example,
microeconomists developed strict guidelines on how to
conduct and report experiments, which led to reliable
empirical results about human behavior in economic

interactions [3]. A challenge in microeconomics is the
control of human subjects in a lab. In the systems litera-
ture, a challenge is the number of hard- and software
components involved and the rapid technical progress of
these. As in any other field of science and engineering it is
still important that results can be reproduced by others
and that the assumptions and details of the implementa-
tions are easily available to others. This does not only
increase the credibility of the research, but it is also vital
for the progress of a field.

Technology nowadays makes it possible to reveal not
only the data for an experiment, but to also make it easier
that others can access the simulation software such that
they can reproduce the results. This article is a companion
paper to [1], which reports the results of experiments on
resource allocation algorithms for cloud computing infra-
structures. In this companion paper, we describe the
simulation software that is made available via a Docker
container. We recommend readers to first read through
the general experimental environment outlined in Wolke
et al. [1], before reading through this paper.

In what follows, we will briefly revisit the results from [1]
in the next section, describe the simulation framework, and
how to run simulations in the framework. Finally, we will

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.12.004
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.is.2015.03.003
n Corresponding author.
E-mail addresses: wolke@tum.de (A. Wolke),

bichler@in.tum.de (M. Bichler), fchirigati@nyu.edu (F. Chirigati),
vs77@nyu.edu (V. Steeves).

1 Reviewer.

Information Systems 59 (2016) 98–101

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.12.004
http://dx.doi.org/10.1016/j.is.2015.12.004
http://dx.doi.org/10.1016/j.is.2015.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.12.004&domain=pdf
mailto:wolke@tum.de
mailto:bichler@in.tum.de
mailto:fchirigati@nyu.edu
mailto:vs77@nyu.edu
http://dx.doi.org/10.1016/j.is.2015.12.004


outline software dependencies relevant for replication
experiments.

2. Experiments in Wolke et al. [1]

In Wolke et al. [1] we compare the efficiency of different
resource allocation strategies experimentally. We focused on
dynamic environments where virtual machines need to be
allocated and deallocated to servers over time. Simple bin
packing heuristics were analyzed and used to place virtual
machines upon arrival. These placement heuristics can lead
to suboptimal server utilization, because they cannot con-
sider virtual machines, which arrive in the future.

We ran lab experiments and simulations with different
controllers and different workloads to understand which
control strategies achieve high levels of energy efficiency in
different workload environments. Combinations of place-
ment controllers and periodic reallocations achieved the
highest energy efficiency subject to predefined service levels.
While the type of placement heuristic had little impact on
the average server demand, the type of virtual machine
resource demand estimate used for the placement decisions
had a significant impact on the overall energy efficiency.

These results were generated using a software frame-
work described in this article. The same software compo-
nents and implementations of different control strategies
were used for lab experiments and simulations, which
required the development of a new software framework.
We designed our software such that other researchers can
extend it, implement their own resource allocation con-
trollers, and benchmark them against existing controllers.

3. The simulation framework

A simulation is given a set of time series as well as the
server and virtual machine (VM) capacity as an input. Each of
the time series describes the CPU utilization of a VM. A
server's utilization is described by the sum of the VM utili-
zations running plus the base demand of the server itself.

An initial placement controller is executed in the first
step of a simulation. It computes a mapping of VMs to
servers which is called VM allocation. Afterwards the VMs
are migrated to the server accordingly. Subsequently, the
simulation loop is initiated by injecting a message to the
global message pump. At the end of a simulation loop, a
new message is injected to trigger the next simulation
loop within 3 s. Server and VM utilization levels are
updated in each simulation loop.

A reallocation controller is triggered by the message pump
in regular intervals, potentially triggering VM migrations.
Usually, these take longer than the 3 s simulation loop inter-
val and are controlled by the message pump as well. Migra-
tions increase the CPU and memory utilization by variable
amounts on the servers involved (both migration source and
target server). Appropriate values are added during the server
and VM load computation.

Placement controllers allow the simulation of dynamic
cloud environments where VMs are allocated and
removed continuously. For a simulation, this process is

described by a VM arrival–departure schedule. For each
VM allocation the placement controller is executed to
determine a target server for the VM. At the end of a VM's
lifetime it is removed from the simulation automatically.

The simulation framework mimics the CPU and mem-
ory utilization of servers and VMs in a cloud infrastructure.
Neither applications running within the VMs are modeled
nor the network infrastructure. In lab experiments, real
VMs and hardware components can be used instead of the
simulations. The implementation leveraging a physical
server infrastructure depends on micro-services (e.g., a
monitoring service), which are not described in this article.
Wolke [4, Appendix A] provides an overview of the
experimental testbed infrastructure we used and [4,
Appendix C] explains how this infrastructure was con-
trolled by the simulation framework.

All controller implementations presented in [1] are
found in the Docker container folder SRC_BALA-
NCER¼/root/work/paper.IS2015/control/Control/

src/balancer. Initial placement controllers extend from
InitialPlacement, reallocation controllers from strategy.Strategy-
Base, and placement controllers extend placement. Place-
mentBase classes. For new controller implementations, a class/
name mapping has to be added to the SRC_BALANCER/con-
troller.py script.

4. Configuring a simulation

No special configuration files exist in our framework as
everything is configured within a set of Python source files in
the folder SRC_CTRL¼/root/work/paper.IS2015/con-

trol/Control with the filename prefix conf_.

� SRC_CTRL/src/conf_controller.py specifies
which controllers to use for initial placement, realloca-
tion, and placement controllers. Each value is a string
that is mapped to a concrete class by the script
SRC_CTRL/src/balancer/controller.py. Each
controller requires a mapping within this script. An
initial placement controller is required by all simula-
tions while reallocation and placement controllers are
optional. Controllers are disabled by setting their con-
figuration value to None.

� SRC_CTRL/src/conf_domainsize.py contains the
available domain2 sizes with CPU and memory capacity
and the probability that a domain size appears in a
simulation.

� SRC_CTRL/src/conf_domains.py describes the
number and capacity of each domain within the simu-
lation. The setup is done procedurally and can be
changed accordingly. It should be noted that the con-
figured domains correspond to the state of a physical
infrastructure if experiments are conducted.

� SRC_CTRL/src/conf_load.py holds a list of time
series used during the simulation. Time series are stored
in a special service called Times, described below, where

2 The term domain is used as a synonym for VM within the source
codes.

A. Wolke et al. / Information Systems 59 (2016) 98–101 99



Download English Version:

https://daneshyari.com/en/article/396655

Download Persian Version:

https://daneshyari.com/article/396655

Daneshyari.com

https://daneshyari.com/en/article/396655
https://daneshyari.com/article/396655
https://daneshyari.com

