
Single-pass and linear-time k-means clustering based
on MapReduce

Saeed Shahrivari, Saeed Jalili n

Computer Engineering Department, Tarbiat Modares University, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 25 May 2014
Accepted 23 February 2016
Recommended by: G. Vossen
Available online 4 March 2016

Keywords:
Distributed k-means
Data clustering
MapReduce-based clustering

a b s t r a c t

In recent years, k-means has been fitted into the MapReduce framework and hence it has
become a very effective solution for clustering very large datasets. However, k-means is not
inherently suitable for execution in MapReduce. The iterative nature of k-means cannot be
modeled in MapReduce and hence for each iteration of k-means an independent MapReduce
job must be executed and this results in high I/O overhead because in each iteration the
whole dataset must be read and written to slow disks. We have proposed a single-pass
solution based on MapReduce called mrk-means which uses the reclustering technique. In
contrast to available MapReduce-based k-means implementations, mrk-means just reads the
dataset once and hence it is several times faster. The time complexity of mrk-means is linear
which is lower than the iterative k-means. Due to usage of k-meansþþ seeding algorithm,
mrk-means results in clusters with higher quality, too. Theoretically, the results of mrk-means
are Oðlog2 kÞ�competitive to optimal clustering in the worst case, considering k as the
number of clusters. During our experiments which were done on a cluster of 40 machines
running the Hadoop framework, mrk-means showed both faster execution times, and higher
quality of clustering results compared to available MapReduce-based and stream-based
k-means variants.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Large volumes of data are being produced nowadays and
there is a high demand for methods and tools that can
efficiently manage, mine, and process these large volumes
of data, that is commonly known as Big Data [1]. Classical
tools and management systems are not appropriate for big
data. Hence, several new programming models and fra-
meworks have been proposed for processing big data. The
most well-known framework is MapReduce [2]. MapReduce
is initially developed by Google and its popular open-source

implementation is Hadoop [3]. MapReduce offers three
main features in a single package: simple programming
paradigm, linear and automatic scalability, and built-in fault
tolerance. These three features make MapReduce an ideal
framework for big data processing [4].

One of the most crucial tasks in data and knowledge
discovery is Data Clustering. According to Jain's definition,
“The goal of data clustering, also known as cluster analysis,
is to discover the natural grouping(s) of a set of patterns,
points, or objects” [5]. Data clustering has various appli-
cations in different fields. For example, in Computer
Vision, Image Segmentation can be defined as a clustering
problem [6]. In Information Retrieval, document clustering
can provide hierarchical retrieval and improvements in flat
retrieval performance [7]. In Bioinformatics, clustering is
used for improving multiple sequence alignment [8]. Many

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.02.007
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: s.shahrivari@modares.ac.ir (S. Shahrivari),

sjalili@modares.ac.ir (S. Jalili).

Information Systems 60 (2016) 1–12

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.02.007
http://dx.doi.org/10.1016/j.is.2016.02.007
http://dx.doi.org/10.1016/j.is.2016.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.02.007&domain=pdf
mailto:s.shahrivari@modares.ac.ir
mailto:sjalili@modares.ac.ir
http://dx.doi.org/10.1016/j.is.2016.02.007


other important applications also exist in fields like:
Medicine, Online Social Networks, etc. [5].

However, classic tools and methods for data clustering
are not appropriate for big data. Most of the classic data
clustering algorithms require the data to be stored in the
main memory but a big dataset usually does not fit in the
main memory. On the other hand, some data clustering
methods like Single and Complete Linkage clustering
algorithms cannot be applied to big data because the time
complexity of these algorithms is Oðn2Þ assuming n as the
number of items [9]. When big data is the target, the
volume of data is usually so big that just sub-linear, line-
arithmic, and linear time algorithms can be used.

k-means and its variants are the most well-known
linear time algorithms for data clustering [5]. k-means
has been successfully fitted into MapReduce and several
implementations have been proposed [10–13]. However,
the proposed solutions have some considerable short-
comings. Some shortcomings are inherited from the
standard k-means algorithm. No guarantee of results
quality and optimality, no guarantee of convergence, the
requirement of providing the number of clusters as an
input parameter, and high dependency of results quality
to initial seeds, are some major shortcomings that are
inherited from the standard k-means algorithm to avail-
able MapReduce-based k-means implementations [5].

On the other hand, a major performance penalty is the
result of inherent conflict between the MapReduce fra-
mework and the k-means algorithm. k-means is an itera-
tive algorithm and for reaching confident results, it needs
to make some iterations. In contrast, MapReduce has a
significant problem with iterative jobs [14]. MapReduce
naturally does not support iteration and recursion and in
order to execute iterative jobs, usually a driver program is
used [15]. That is to say, a driver program executes the
actual procedure several times in order to emulate itera-
tive execution. This results in a major overhead for each
iteration. In each iteration, the whole data must be loaded
from the file system into the main memory. Then, after it is
processed, the output must be written to filesystem again.
Therefore, lots of I/O-related operations like disk I/O and
data serialization occur during each iteration and this
decelerates the whole execution [14].

In this paper, we present a novel single-pass MapReduce-
based data clustering solution based on the well-known
k-means algorithm that tries to overcome the mentioned
shortcomings. Our solution is namedmrk-means and delivers
three main advantages. First, we have decreased both time
and I/O complexity of clustering from OðI � n=pÞ to Oðn=pÞ
assuming n as the number of items, I as the number of
iterations, and p as the number of available processors. Sec-
ond, we have given strong bounds for the optimality of the
results. We have proven that mrk-means is an Oðlog2 kÞ
approximation to the optimal k-means solution.

We have performed several experiments on both real-
world and synthesized datasets and the results show that
mrk-means is superior to the state of the art MapReduce-
based and single-pass stream-based k-means variants
considering both speed and quality of results. Our
experiments also show that mrk-means scales well when
the number of machines or volume of data increases.

2. Related work

k-means is a very old and well-known clustering
algorithm [5]. Several parallel versions have been pro-
posed for parallel architectures [16–18]. Several versions
have also been proposed for distributed systems [19,20].
However, as we mentioned before, less works have been
proposed based on MapReduce. Besides k-means, there are
other algorithms that are designed for large datasets like
CURE which is based on sampling [21], DBSCAN which is a
density based algorithm [22], and FDM which performs
constrained clustering [23] but in this paper we focus on k-
means variants.

Zhao et al. have proposed a MapReduce-based k-means
clustering solution [12]. A fast solution is also available via
the Mahout project that executes over the Hadoop fra-
mework [11]. Bahmani et al. have proposed a scalable k-
means algorithm that extends the k-meansþþ technique
for initial seeding [24]. There is also a distributed
k-meansþþ implementation available from the GraphLab
project [25]. However, all of the mentioned solutions need
to process the whole dataset for several iterations in order
to reach acceptable results and this makes them inap-
propriate for the MapReduce framework because MapRe-
duce does not support iteration inherently. Hadian and
Shahrivari have also proposed a parallel and single-pass
clustering algorithm for parallel shared memory systems
but it is not designed for the MapReduce framework [26].

Several extensions have been proposed for extending the
standard MapReduce model to support recursion and itera-
tion. Twister [14], Spark [27], and HaLoop [28] are some
solution to be mentioned. The k-means algorithm has been
implemented for all of the mentioned extensions. However,
all of these solutions need the dataset to be small enough to
be stored in the main memory. On the other hand, they are
not stable and mature enough like the standard MapReduce
implementations, i.e. Hadoop. Hence, they are not appro-
priate and cost-effective for very large datasets.

There are also some related works in the area of data
stream clustering. These works are related because they
try to cluster the given dataset in a single pass. Several, k-
means variant have been proposed for stream data [29–
32]. These solutions are able to cluster the dataset in a
single pass but none of them are inherently capable and
ready for execution in distributed systems and especially
the MapReduce framework.

3. Preliminaries

If we have a set of n data items (also known as a data-
set), each having d features, then this dataset can be
represented by a matrixMn�d. We definemi;j as the element
of row i and column j in M. Then, the ith item can be
represented by vector m!i. Given such a matrix, a partitional
clustering algorithm should find a set C ¼ fC1;C2;…;Ckg of
clusters (partitions) as the output of clustering. Each cluster
should preserve these two conditions:

1. Each cluster should have at least one data item assigned,
i.e., 8CiAC:Cia0=.

S. Shahrivari, S. Jalili / Information Systems 60 (2016) 1–122



Download English Version:

https://daneshyari.com/en/article/396780

Download Persian Version:

https://daneshyari.com/article/396780

Daneshyari.com

https://daneshyari.com/en/article/396780
https://daneshyari.com/article/396780
https://daneshyari.com

