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From observational data alone, a causal DAG is only identifiable up to Markov equivalence.
Interventional data generally improves identifiability; however, the gain of an intervention
strongly depends on the intervention target, that is, the intervened variables. We present
active learning (that is, optimal experimental design) strategies calculating optimal
interventions for two different learning goals. The first one is a greedy approach using
single-vertex interventions that maximizes the number of edges that can be oriented after
each intervention. The second one yields in polynomial time a minimum set of targets of
arbitrary size that guarantees full identifiability. This second approach proves a conjecture
of Eberhardt (2008) [1] indicating the number of unbounded intervention targets which
is sufficient and in the worst case necessary for full identifiability. In a simulation study,
we compare our two active learning approaches to random interventions and an existing
approach, and analyze the influence of estimation errors on the overall performance of
active learning.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Causal relationships between random variables are usually modeled by directed acyclic graphs (DAGs), where an arrow
between two random variables, X → Y , reveals the former (X) as a direct cause of the latter (Y ). From observational data
alone (that is passively observed data from the undisturbed system), directed graphical models are only identifiable up to
Markov equivalence, and arrow directions (which are crucial for the causal interpretation) are in general not identifiable.
Without the assumption of specific functional model classes and error distributions [2], the only way to improve identifia-
bility is to use interventional data for estimation, that is data produced under a perturbation of the system in which one or
several random variables are forced to specific values, irrespective of the original causal parents. Examples of interventions
include random assignment of treatments in a clinical trial, or gene knockdown or knockout experiments in systems biology.

The investigation of observational Markov equivalence classes has a long tradition in the literature [3–5]. Hauser and
Bühlmann [6] extended the notion of Markov equivalence to the interventional case and presented a graph-theoretic char-
acterization of corresponding Markov equivalence classes for a given set of interventions (possibly affecting several variables
simultaneously). Recently, we presented strategies for actively learning causal models with respect to sequentially improving
identifiability [7]. One of the strategies greedily optimizes the number of orientable edges with single-vertex interventions,
and one that minimizes the number of interventions at arbitrarily many vertices to attain full identifiability. This paper
is an extended version of our previous work: besides a more detailed presentation of the algorithms, we evaluate their
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Fig. 1. A DAG D and the corresponding intervention graphs D({2}) and D({1,4}) .

performance in the absence and presence of estimation errors and compare them to competing methods, and finally pro-
vide proofs for the correctness of the algorithms.

Several approaches for actively learning causal models have been proposed during the last decade, Bayesian as well as
non-Bayesian ones, optimizing different utility functions. All these active learning strategies consider sequential improve-
ment of identifiability, which is different from the more classical active learning setting where one aims for sequential
optimization of estimation accuracy [8]. In the non-Bayesian setting, Eberhardt [1] and He and Geng [9] considered the
problem of finding interventions that guarantee full identifiability of all representatives in a given (observational) Markov
equivalence class which is assumed to be correctly learned. The approach of Eberhardt [1] works with intervention targets of
unbounded size. We prove the conjecture of Eberhardt [1] on the number of intervention experiments sufficient and in the
worst case necessary for fully identifying a causal model, and provide an algorithm that finds such a set of interventions in
polynomial time (OptUnb, see Section 4.2). He and Geng [9] restrict the considerations to single-vertex interventions. They
propose an iterative line of action for learning causal models: their method estimates the observational Markov equivalence
class in a first step and then incorporates interventional data to decide about edge orientations in subsequent steps. This
is not favorable from a statistical point of view since interventional data also yields information about parts of the graph
that are not adjacent to the intervened variable. We will see in Section 5 that we indeed get smaller estimation errors in
the finite sample case if we do not decouple the estimation of the observational Markov equivalence class and that of edge
directions. Moreover, the approach of He and Geng [9] is not able to cope with a situation in which we have few or no
observational data, in contrast to ours. Meganck et al. [10] compare different utility functions for single-vertex interventions,
but do not address algorithmic questions of efficiently calculating optima of the utility functions. In the Bayesian setting,
Tong and Koller [11] and Masegosa and Moral [12] use entropy-based utility functions. While the approach of Tong and
Koller [11] only interacts with the system under investigation, the approach of Masegosa and Moral [12] uses (error-free)
expert knowledge.

This paper is organized as follows: in Section 2, we specify our notation of causal models and formalize our learning
goals. In Section 3, we summarize graph-theoretic background material upon which our active learning algorithms, pre-
sented in Section 4, are based. In Section 5, we evaluate our algorithms in a simulation study. The proofs of the theoretical
results of Section 4 can be found in Appendix A.

2. Model

We consider a causal model on p random variables (X1, . . . , Xp) described by a DAG D . Formally, a causal model is a pair
(D, f ), where D is a DAG on the vertex set V = [p] := {1, . . . , p} which encodes the Markov property of the (observational)
density f : f (x) = ∏p

i=1 f (xi | xpaD (i)); paD(i) denotes the parent set of vertex i.
Our notation and definitions related to graphs are summarized in Section 3. Unless stated otherwise, all graphs in this

paper are assumed to have the vertex set [p].

2.1. Causal calculus

Beside the conditional independence relations of the observational density implied by the Markov property, a causal
model also makes statements about effects of interventions. We consider stochastic interventions [13] modeling the effect
of setting or forcing one or several random variables XI := (Xi)i∈I , where I ⊂ [p] is called the intervention target, to
the value of independent random variables U I . Extending the do() operator [14] to stochastic interventions, we denote the
interventional density of X under such an intervention by

f
(
x|doD(XI = U I )

) :=
∏

i /∈I

f (xi |xpaD (i))
∏

i∈I

f̃ (xi),

where f̃ is the density of U I on XI . We also encompass the observational case as an intervention target by using I = ∅
and the convention f (x|do(X∅ = U∅)) = f (x). The interventional density f (x|doD(XI = U I )) has the Markov property of the
intervention graph D(I) , the DAG that we get from D by removing all arrows pointing to vertices in I . An illustration is
given in Fig. 1.

We consider experiments based on data sets originating from multiple interventions. The family of targets I ⊂ P([p]),
where P([p]) denotes the power set of [p], lists all (distinct) intervention targets used in an experiment. A family of targets
I = {∅, {2}, {1,4}} for example characterizes an experiment in which observational data as well as data originating from
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