
International Journal of Approximate Reasoning 55 (2014) 977–988

Contents lists available at SciVerse ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Decision-theoretic troubleshooting: Hardness of
approximation ✩

Václav Lín a,b,∗
a Institute of Information Theory and Automation of the AS CR, Prague, Czech Republic
b Faculty of Management, Prague University of Economics, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 22 July 2013

Keywords:
Decision-theoretic troubleshooting
Hardness of approximation
NP-completeness
Min-sum set cover
Decision tree

Decision-theoretic troubleshooting is one of the areas to which Bayesian networks can
be applied. Given a probabilistic model of a malfunctioning man-made device, the task
is to construct a repair strategy with minimal expected cost. The problem has received
considerable attention over the past two decades. Efficient solution algorithms have been
found for simple cases, whereas other variants have been proven NP-complete. We study
several variants of the problem found in literature, and prove that computing approximate
troubleshooting strategies is NP-hard. In the proofs, we exploit a close connection to set-
covering problems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In decision-theoretic troubleshooting [3], we are given a probabilistic model of a man-made device. The model describes
faults, repair actions and diagnostic actions addressing the faults. Knowing that the modeled device is in a faulty state, the
task is to find the most cost-efficient strategy for fixing the device with available repair and diagnostic actions. This is a
natural optimization problem that has been studied independently in various contexts since the early days of computing
[12,2,8].

Troubleshooting has become one of the areas to which we apply Bayesian networks [3,11] with interesting algorithmic
problems and results [18]. The troubleshooting problem is known to be solvable in polynomial time under quite restrictive
assumptions (to be discussed in Section 2). When these assumptions are relaxed, the problem is NP-hard [22]. Efficient
heuristics exist that yield close-to-optimal results in practice [11,9]. Search algorithms for computing optimal troubleshoot-
ing strategies are described in [23]. However, we provide negative results showing that approximating the optimal solutions
is, in general, a difficult problem.

Our contribution. We solve an open problem suggested by Ottosen [18] and show that troubleshooting with cost clusters
(to be defined below) forming an acyclic directed graph is NP-complete, and it is NP-hard to approximate. We improve
upon known NP-completeness results [22] by showing hardness of approximation for troubleshooting scenarios containing
multiple dependent faults, dependent actions or questions.

Organization of the paper. In Section 2, we provide an overview of the various troubleshooting problem setups. Precise state-
ments of our results are in Section 3.1. The proofs are presented in Section 3.2. These proofs utilize reductions from the
Min-sum set cover problem [6] and the Decision tree problem [7,4].

✩ This work was supported by the Czech Science Foundation through grant 13-20012S, and by the Institutional Research Support of the Faculty of
Management, Prague University of Economics.

* Correspondence to: Institute of Information Theory and Automation of the AS CR Prague, Czech Republic.
E-mail address: lin@utia.cas.cz.

0888-613X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ijar.2013.07.003

http://dx.doi.org/10.1016/j.ijar.2013.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:lin@utia.cas.cz
http://dx.doi.org/10.1016/j.ijar.2013.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2013.07.003&domain=pdf


978 V. Lín / International Journal of Approximate Reasoning 55 (2014) 977–988

Fig. 1. Bayesian network for a troubleshooting model with single fault assumption and actions conditionally independent given the faults. There are three
faults – F1, F2, F3. To enforce the single fault assumption, we use a fault variable F with states {1,2,3} and define the probability tables for all Fi so that
Fi = 1 if and only if F = i. Actions A1, A2, A3 each address one of the faults. A question Q can be used to discriminate between F2 and F3.

2. Troubleshooting models and strategies

Bayesian networks for troubleshooting [3,11] contain variables representing

• faults,
• repair actions, called simply actions, and
• diagnostic actions, called questions.

Actions have only two possible outcomes – either the system is fixed after the action has been performed, or it remains in
a faulty state. We assume that we cannot introduce any new faults by performing the actions, and we know the outcome of
any action immediately after its execution. Questions do not alter the state of the system, but may give useful information
to direct the troubleshooting process.

Each action or question has an associated cost. These costs do not change over time except when stated otherwise. The
actions and questions are idempotent [18] in the sense that repeating a failed action does not fix the system, and repeating
a question provides the same answer as the first time the question was asked.

Under the single fault assumption, there can be at most one fault present in the system at any moment of time. A simple
troubleshooting model with the single fault assumption is shown in Fig. 1.

Troubleshooting strategy [23] is a policy governing the troubleshooting process. An example of a troubleshooting strategy
is shown in Fig. 2. In general, troubleshooting strategy is a rooted directed tree with internal nodes labeled by actions and
questions. Edges are labeled by outcomes of the actions and questions. Each path from the root of the strategy to one of
the leaves corresponds to a possible troubleshooting session starting at the root and terminating in the leaf. Failure nodes
are all the leaf nodes for which the corresponding troubleshooting session fails to fix the system. For a strategy S, we use
this notation:

L(S) The set of leaves, also called terminal nodes.
L−(S) The set of failure nodes, L−(S) ⊂L(S).
e� The evidence (the outcomes of all actions and questions) compiled along the path from the root ϑ of strategy S to

node �. Let E(ϑ, �) be the set of all the edges constituting the path from ϑ to �. Then e� = ⋃
e∈E(ϑ,�) outcome(e).

An example is shown in Fig. 2.
P(e�) The probability of reaching node �.
t(�) The cost of performing all the actions and questions on the path from the root of S to node �.
cP The penalty for not fixing the system.

Since we assume that each repair action has only two possible outcomes, “1” (system fixed) and “0” (system still in faulty
state), the outdegree of all nodes labeled by repair actions is exactly two, with the edge labeled by “1” always leading to a
terminal node in L(S) \L−(S). Our goal is to construct a strategy S minimizing the expected cost of repair

ECR(S) =
∑

�∈L(S)

P(e�) · t(�) +
∑

�∈L−(S)

P(e�) · cP . (1)

Fig. 2 gives an example of ECR evaluation.

2.1. Troubleshooting without questions

When there are no questions, the troubleshooting strategy is just a sequence of repair actions A1, . . . , An . The actions
are performed in the given order and the troubleshooting session continues until the fault is fixed or all the actions have
been used. In this paper, we assume the following.



Download English Version:

https://daneshyari.com/en/article/397892

Download Persian Version:

https://daneshyari.com/article/397892

Daneshyari.com

https://daneshyari.com/en/article/397892
https://daneshyari.com/article/397892
https://daneshyari.com

