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a b s t r a c t

This paper presents a novel design of interval type-2 fuzzy logic systems (IT2FLS) by utilizing the theory
of extreme learning machine (ELM) for electricity load demand forecasting. ELM has become a popular
learning algorithm for single hidden layer feed-forward neural networks (SLFN). From the functional
equivalence between the SLFN and fuzzy inference system, a hybrid of fuzzy-ELM has gained attention
of the researchers. This paper extends the concept of fuzzy-ELM to an IT2FLS based on ELM (IT2FELM).
In the proposed design the antecedent membership function parameters of the IT2FLS are generated ran-
domly, whereas the consequent part parameters are determined analytically by the Moore–Penrose
pseudo inverse. The ELM strategy ensures fast learning of the IT2FLS as well as optimality of the param-
eters. Effectiveness of the proposed design of IT2FLS is demonstrated with the application of forecasting
nonlinear and chaotic data sets. Nonlinear data of electricity load from the Australian National Electricity
Market for the Victoria region and from the Ontario Electricity Market are considered here. The proposed
model is also applied to forecast Mackey-glass chaotic time series data. Comparative analysis of the pro-
posed model is conducted with some traditional models such as neural networks (NN) and adaptive
neuro fuzzy inference system (ANFIS). In order to verify the structure of the proposed design of IT2FLS
an alternate design of IT2FLS based on Kalman filter (KF) is also utilized for the comparison purposes.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

Electricity is an essential service which plays a vital role to facil-
itate our convenience. It has illuminated our planet and has drawn
us where one can feel the practicability of an industrialized world.
The mounting demand of electricity is proportional to the increase
in population, economic buildup, adaptations of the latest use of
technologies and some climatic changes. A continuous supply to
the demand is vital for an efficient and reliable electricity network.
Planning of the electricity systems is vital so that the demand and
supply can be matched. In order to be able to plan the electricity
systems in its three major aspects of generation, transmission,
and distribution, it is necessary to analyze huge amount of infor-
mation available in power system data-bases [1,2].

Electricity generation systems, that rely on the traditional elec-
tricity planning, regularly face the supply/demand mismatch

issues due to the inaccurate forecasts of the load demand. Most
of these traditional power grids are not designed to be compliant
with the rapidly changing climate, the high energy-efficiency
demand and/or the use of the latest technologies. Smart grid, also
known as intelligrid, interagrid and future grid [3], is likely to
address the limitations of the traditional grid. Smart grid can be
defined as ‘‘an electric system that uses information, two-way,
cyber-secure communication technologies, and computational
intelligence in as integrated fashion across electricity generation,
transmission, substations, distribution and consumption to achieve
a system that is clean, safe, secure, reliable, resilient, efficient, and
sustainable” [4]. Availability of the reliable load demand forecast-
ing is required to ensure the security and stability of the smart grid.
The utility providers need load demand forecasting tools to take
into account the changes in demand; decided by the consumer.
These tools provide useful information to the utilities to plan the
resources and to balance the supply–demand, thus ensuring conti-
nuity and reliability of service provision [5]. The consumers can
manage electricity load demand consumption by adjusting its
usage during on/off-peak hours. Practicing such a mechanism will
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help to reduce their electricity bills. With the emergence of smart
grid and distributed generation technologies in recent years, new
and advanced load demand forecasting models are required to be
introduced.

Rigorous studies on the short term load forecasting have been
published [6–9]. Statistical and computational intelligence models
are the two paradigms that are mostly used for forecasting the
electricity load demand. The later is gaining more attention in
incorporating the nonlinearity of the load demand data. Being able
to approximate the nonlinear relationship between the input(s)
and output, neural networks (NN) and fuzzy logic systems (FLS)
were extensively applied to the load forecasting among other com-
putational intelligence models [6,7,10–12]. A new cascade NN
based method was proposed for the short-term load forecasting
in the deregulated electricity market [13]. A novel integrated tech-
nique, random fuzzy NN, was presented for tackling uncertainties
of electric load forecasting [14]. Fuzzy logic and wavelet transform
integrated generalized NN was described and applied to the short
term week day electrical load forecasting problem [12]. Short-term
load forecasting models were developed by using fuzzy logic and
adaptive neuro-fuzzy inference system (ANFIS) [15]. Some of our
group’s recent work on computational models for load demand
forecasting can be seen in [16–19,11].

Type-2 fuzzy logic system (T2FLS) as an extension of the
conventional type-1 fuzzy logic system (T1FLS) is increasingly uti-
lized in modeling real world problems [20–25]. In contrast to
T1FLS, a T2FLS assigns a fuzzy number to the membership grades
[26,27]. Experimental results have been reported presenting
improvements of the T2FLS over its T1 counterpart in terms of
accuracy [28–30]. Because of the large computing resources
required for the computationally intensive T2FLSs, IT2FLS is intro-
duced as its simplest version. Using IT2FLSs, the membership grade
for every point is a crisp set in an interval [0,1] rather then fuzzy.
Though improvements of IT2FLSs to its earlier version have been
evidenced, yet it still lacks a systematic and coherent design proce-
dure. In order to determine the parameters of an IT2FLS optimally,
various learning algorithms are proposed in literature that include
dynamical optimal training method [31], back propagation based
learning method [32], genetic and other bio-inspired algorithms
[33–36], self-organizing with ant colony optimization [37], rule
reduction of IT2FLSs using singular value decomposition [38] and
extended Kalman filter based learning algorithm [39]. Castillo
et al. [40] presented a concise review on the optimization of T2FLSs
using bio-inspired algorithms. They stated that ‘‘the use of bio-
inspired optimization methods have helped in the complex task
of finding the appropriate parameter values and structure of fuzzy
systems”. However the computation burden of the classical
learning algorithms for IT2FLSs is still an issue.

These learning algorithms are usually very slow and require
iterative tuning of the parameters to achieve good learning

performance. Also the distressing issues of learning algorithms
i.e. stopping criteria, learning rate, learning epochs and local min-
ima may not be handled by the conventional learning algorithms.
An adaptive interval type-2 fuzzy control based on gradient des-
cent algorithm [41] was presented to overcome the divergence of
bio-inspired algorithms. Due to the researchers’ interests and ini-
tiatives in this area, advanced learning algorithms are presented
during the past several years with improved performances
[42,43]. Huang et al. [44,45] introduced the theory of ELM that
can solve the stated issue of conventional training methods. More-
over, it easily achieves good generalization performance at extre-
mely fast learning speed.

ELM is originally proposed for the SLFN. From the functional
relationship between FLS and NNs [46,47], it is observed that under
some mild conditions FLS can be interpreted as a special case of
SLFN and can be trained using its learning algorithms. Evolutionary
fuzzy-ELM is proposed to analyze mammographic risk [48]. A
hybrid model of FLS and ELM was presented as a fault detection
method for improving the efficiency of circulating water systems
in power generation plant [49]. ELM based fuzzy inference system
has been presented in [50] where membership functions for the
fuzzy rules were obtained through ELM and the consequent part
was determined through multiple ELMs. An online sequential
fuzzy-ELM is proposed for function approximation and classifica-
tion problems [51]. In these designs of fuzzy-ELM the antecedent
part parameters were generated randomly, and the consequent
part parameters were determined analytically. After successful
application of T1FLS into vast application areas; researchers are
now finding their way to solve the dynamic and uncertain prob-
lems using the extensions of classical FLS. A hybrid model of ELM
and T2FLSs was proposed to deal with uncertainty in permeability
prediction as well as to boost the generalization ability of ELM [22].
The emphasis of the study was to examine the viability of using
T2FLS as a preprocessor for improved generalization of ELM. A
challenge to develop an efficient learning algorithm for T2FLSs
was taken by Deng at el. in [52].

Motivated by the superior performances of the fuzzy-ELM in
different fields, it is suggested to design alike model in the field
of electricity load demand forecasting. In this paper, the ELM strat-
egy is used to tune the parameters of an IT2FLS for modeling non-
linear and chaotic data sets. Based on the working principle of ELM,
the antecedent part parameters of the IT2FLSs are generated ran-
domly, while the consequent part parameters are initialized and
later refined using the Moore–Penrose pseudo inverse.

The rest of this article is structured as follows. Section ‘Backgro
und’ introduces the basic concepts of IT2FLSs and ELM. The
methodology utilized for the research work of this paper is
described in section ‘Methdology of IT2FELM’. Section ‘Simulation
result’ presents the case studies and discussion on the empirical
results. Concluding remarks are provided in section ‘Conclusions’.

Acronym

ANFIS adaptive neuro fuzzy inference system
ELM extreme learning machine
FLS fuzzy logic system
IT2 interval type-2
IT2FLS interval type-2 fuzzy logic system
IT2FELM IT2FLS trained using extreme learning machine
IT2FKF IT2FLS trained using KF method
KF Kalman filter
MAPE mean absolute percentage error
NN neural network

NEM Australian National Electricity Market
OEM Ontario Electricity Market
RMSE Root Mean Square Error
SLFN Single hidden layer feed-forward neural networks
T1 type-1
T1FLS type-1 fuzzy logic system
T2 type-2
T2FLS type-2 fuzzy logic system
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