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a b s t r a c t

This paper presents a new framework for vulnerability analysis. Under this framework, we can identify
the vulnerable components and the critical components of a power grid. Distinct from previous work,
our model considers the interaction between the components of the power system, and models the
dynamic evolving process of cascading failures. The impact of a component failure on the system is
dynamically changing as the failure propagates. We analyze the vulnerability of a power grid using an
optimization model based on game theory, and use linear programming method to solve it. Since insta-
bility is the reason of power outage, we use an instability index to measure the negative impact to the
system. The results from this optimization problem suggest which component of the system is critical
since its failure can most negatively impact the cyber-physical system.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

The electrical power grid nowadays is well connected. As the
grid connectivity increases, we will have fewer power outages
since the high demand in one region can be satisfied by not only
the local generation, but also remote generation from other
regions. However, connectivity is a double-edged sword—multiple
independent small-scale power outages may be mitigated, fewer
but larger-scale power outage is more likely to happen. Large-
scale power outage is typically the consequence of cascading
failures propagated through a power system. To avoid cascading
failure, it is important to identify the critical points or critical lines
in the power system and protect them from failure. As the physical
system is coupled with the cyber system, additional threats are
introduced. Our job is not only to protect the grid from natural fail-
ure but also adversarial attacks. This is the scope of vulnerability
analysis.

To take preventive action against potential attacks, it is impor-
tant to identify the vulnerability as early as possible so that grid
operator can enhance the security and robustness of those
identified components. In this paper, we present an analytical

framework to identify the security holes of a power grid. It is ana-
lytical in the sense it identifies the most vulnerable and the most
critical components of the system without deliberately probing
the system to discover its weaknesses. Previous work on power
grid vulnerability analysis is mainly on the SCADA system [1,2],
and/or based on attack graphs or attack trees ([3,4], etc.). The pro-
posed method uses a different approach for network vulnerability
analysis and can be extended beyond the SCADA system to con-
sider the control and monitoring devices and communication links
in a smart grid.

To show the cascading failure propagation in a power grid, we
study a simple six-bus three-machine system in Fig. 1. Suppose
instantaneous high load at bus 2 causes power oscillation at bus
2. If transient instability cannot be dampened timely and it may
cause power outage in this area. This ‘‘fault” may be propagated
to bus 3 and the extra load may also cause system instability in
that area. If the instability is high and it can continue to increase
the power flow in more lines and faults may propagate through
the whole power grid and cause large-scale power outage. The
more the power grid is connected, the more vulnerable it is. An iso-
lated area can only have small scale power outage, but will have it
more often; a highly connected power grid will have fewer but
larger power outage.

To identify the component that is prone to failure is important
since failure of one component may cause chain reaction of more
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components, and therefore the robustness or reliability of the vul-
nerable component should be improved. On the other hand, to
identify the component whose failure can cause the largest degree
of damage to the system is also very important in a security con-
text since the hacker would target at such components to attack.
The identification of the vulnerable components and the critical
components help the grid operator in long term planning. The
operator can reconfigure the generators, power lines or enhance
security protection of some components to keep the grid in a reli-
able and secure state.

A purely topological approach that is based on the metrics of
network connectivity alone will not do a satisfactory job in power
grid vulnerability analysis [5–8]. The reason is that power flow
dynamics is not considered, and the interaction between different
components of the system is not considered. The cascading propa-
gation of failure cannot be captured in such a model. Due to the
heterogeneity in load distribution and source capacity, a more
sophisticated method is needed than the purely topological
approach.

Bompard et al. [9] extended the purely topological approaches
to consider the real power flow allocation and line flow limits in
transmission grids, and introduced a new metrics called ‘‘net-
ability”—the ability of the transmission grid to function properly
under normal operating conditions. In [9] critical components are
identified according to the relative drop in net-ability caused by
the failure of each component. As we will show later, the method
in [9] is what we called ‘‘Static Analysis” in this paper by using a
different metrics from our work.

The key idea of this paper that distinguishes itself from previous
work is to consider the evolving process of system instability after
component failure. System vulnerability is quantified in terms of
the cost to the power system, which is related to system instability.
When system instability is low, power oscillation caused by load
disturbance can be quickly stabilized and no further damage will
occur; when system instability is high, power oscillation cannot
be dampened timely, so it may cause the tripping of a power line.
The tripping of a power line will cause power oscillation in other
areas so the chain reaction will continue.

The scope of this paper does not include the countermeasures of
potential attacks; it only identifies the vulnerable components and
the critical components. It is up to the grid operator to decide what
to do with the result of vulnerability analysis. Countermeasure or
protection is the next step after vulnerability analysis.

Graph model

We can use a multi-source multi-sink flow network to repre-
sent a power grid as follows: source nodes represent generators,
denoted by set G; sink nodes represent loads, denoted by set L;
and intermediate nodes represent buses, denoted by set B. Directed
edges are added from generators to buses and from buses to loads;
bidirectional edges are added between buses to represent the
physical connectivity among them. Let E be the set of bidirectional
edges connecting buses. A directed edge from a generator to a bus
or from a bus to a load has no capacity limit, and therefore the edge
has capacity set to 1. Such edges are not subject to failure. A bidi-
rectional edge between two buses represents the power line with a
capacity limit, and therefore we set the edge capacity cði; jÞ ¼ T�

ij in
both directions, 8ði; jÞ 2 E. If the power flow Si;j exceeds T

�
ij, the line

will trip off.
The graph model for the example in Fig. 1 is shown in Fig. 2.
If the subgraph induced by the bus nodes is fully connected (i.e.,

there is a path from every node to every other nodes), then every
source node has a connected path to every sink node. When there
are multiple sources available, a load may be satisfied by drawing
power from multiple sources. Intuitively, every sink node would
draw power from its nearest (in terms of impedance) source node.
If the nearest source cannot satisfy its demand, then the second
nearest, and so on. This is because the nearest source has the low-
est impedance on the power line; it is also because if there is
increase in demand, the power supply can ramp up quickly if it
is near the sink node so that the power oscillation can be quickly
stabilized.

To compute the power flow on power lines with given load con-
dition, we can formulate the problem as a flow network problem.
When computing the power flow, we ignore the capacity con-
straint since the real power flow does not change its path because
of the capacity limit of the power line. The problem can be cast as
an optimization problem with the constraints that (1) flow conser-
vation is satisfied, (2) the total load demand is satisfied, and (3) the
AC version of Ohm’s Law is approximately satisfied.

Let f ði; jÞ denote the power flow from bus i to bus j; hi denote the
phase on bus i;Xi;j the reactance of the power line between bus i
and bus j. We define the cost of a power line as the absolute error
of the power flow solution:

costði; jÞ ¼ jhi � hj � Xi;jf ði; jÞj; 8ði; jÞ 2 E

Then the optimization problem is to find a power flow solution that
minimizes the total cost. Xij is given as input; h and f ði; jÞ are vari-
ables whose values will be solved from the linear program.

Let Nv denote the neighbors of node v connected by undirected
edges, N�

v denote the neighbors of v connected by out-edges of v,
and Nþ

v denote the neighbors of v connected by in-edges of v. For
a power system with n generators (sources) and m loads (sinks),
the linear program is given as follows:
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Fig. 1. A six-bus three-machine system.
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Fig. 2. The flow network model for the system in Fig. 1.
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