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a b s t r a c t

This paper presents dynamic equivalence of a wind farm based on the model order reduction (MOR)
methods. A doubly-fed induction generator (DFIG) with complete mechanical, electrical and control com-
ponents is the basis for model development. For the purpose of wind fluctuation simulation, the dynamic
model of DFIG can be seen as a linear input–output system with the incoming wind speed as the input
and the generated active power as the output. Linear model reduction techniques, dominant pole based
modal analysis (DPMA) and balanced truncation (BT), combined with classical aggregation skills are
applied to obtain a new low-order system representing a wind farm. Simulations and comparisons are
carried out in the test system to validate the ability of the reduced order model in matching the active
power generated by the detailed wind farm model.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

Wind power has been identified as one of the promising succes-
sors of conventional power generation technologies. Compared
with fossil fuels, wind energy is renewable, plentiful, widely dis-
tributed and environmentally friendly. By 2011, the total name-
plate capacity of wind energy had surpassed 238 GW, which
occupied more than 2.5 percent of worldwide energy usage. It is
estimated that wind power penetration will rise to 8 percent in
2018 [1].

Wind farms are typically assemblages of tens to hundreds of
small-sized wind turbine generators (WTGs). Adding all units in
the farm to a detailed model would lead to the problem of solving
very high-order differential algebraic equations (DAEs), which
results in enormous computation complexity. Meanwhile, the
complete model of single DFIG contains dynamics of different time
scales. Numerical integration of such a stiff system is difficult
unless the step size is taken to be extremely small. Thus, a reduced
order but accurate enough equivalent WF model is required for
power system analysis.

So far, common ways to establish an equivalent wind farm
model can be divided into two categories: coherency based aggre-
gation and model order reduction originated from the control the-
ory. The coherency based method, which is probably most
commonly used for synchronous power systems, consists of two
main steps: (1) identifying coherent groups of WTGs, and (2)
aggregating each coherent group into a single equivalent WTG.

Three different types of aggregation were presented in previous lit-
erature: single machine equivalence [2–4], multi-machine equiva-
lence [5] and compound equivalence [6]. Most methods discussed
above are heuristic (based on prior-experience) or semi-heuristic
and lack strict mathematical justification. Therefore, it is necessary
to apply model order reduction methods originated from system
theory to wind farm dynamic equivalence [7].

The idea of MOR is to replace a given mathematical model of a
system by a model that is much smaller than the original ones, yet
still accurately describes the input–output behaviors of the system.
The reduced order model is effective when the following properties
are satisfied: (1) the approximation error is small, and there exists
a global error bound; (2) system properties (like stability or passiv-
ity) are preserved; (3) the procedure is computationally stable and
efficient [8].

Depending on the properties of the original system that are
retained in the reduced model, there are different model reduction
methodologies. Generally, model reduction techniques are based
on:

(1) Identifying and preserving certain modes of interest directly.
(modal truncation and selective modal analysis).

(2) Singular value decomposition (SVD) which preserves the
observability and controllability of the system. (balanced
truncation and Hankel norm approximation).

(3) Moment matching which approximates the moments of the
transfer functions of the original system (Krylov method).

(4) Singular perturbation analysis, which assumes that the orig-
inal system can be divided into fast and slow dynamic
subsystems.
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Some researchers in this field have introduced MOR methods to
wind farm modeling. In [9], singular perturbation analysis was
applied to fixed speed WTGs and a reduced order model that
neglects the fast dynamics was obtained. In [10], a simplified first
order representation of an individual WTG in a wind farm was pre-
sented and BT method was introduced to reduce the order of the
whole wind farm. Hector utilized selective modal analysis to the
simplified DFIG [11] and presented some preliminary results for
its application to wind farm modeling [12].

In this paper, MOR methods for a detailed wind farm are pre-
sented and compared. The methods of dominant pole based modal
analysis and balanced truncation are selected due to their simplic-
ity. The proposed methods can be applied to dynamic simulation of
the power system with wind farms to reduce computation burden.
Meanwhile, the reduced models have the potentials in the wind
farm controller design for inertial and primary frequency response
[13]. The rest of the paper is organized as follows. In Section ‘‘WTG
dynamic modeling”, the dynamic model of a DFIG, containing a
two-mass shaft model with both rotor side and grid side convert-
ers, is presented. In Section ‘‘Linearized model of a wind farm”, the
linearized input–output model of a wind farm is developed. In Sec-
tion ‘‘Model order reduction of linear system”, the principle of
DPMA and BT algorithm is introduced. Validation of the proposed
methods and conclusion are presented in Sections ‘‘Numerical
results” and ‘‘Conclusion” respectively.

WTG dynamic modeling

To emphasize the generality of the formulation, a detailed
model of DFIG is considered. It is simplified using the following
assumptions:

� The wind speed is within its technical limits, which means the
pitch angle controller can be omitted.

� The nonlinear maximum power point tracking (MPPT) curve is
represented by a third-order polynomial function [14].

� The transient process of the stator is neglected, as it is much fas-
ter than those of other components.

In this way, the entire model can be divided into two parts: the
mechanical part and the electrical part.

The mechanical part is composed of a wind turbine and a two-
mass drive chain system. The wind turbine converts the wind
energy into kinetic energy. The drive chain system can be repre-
sented by either a two-mass or a lumped-mass model. It is
believed that the lump-mass model does not exhibit any low-
frequency torsional oscillations that exist in the practical WTG
and in the two-mass shaft model [15]. Therefore, the two-mass
shaft model is considered for the study.

The electrical part includes a generator and two power convert-
ers. A third order generator model is adopted, which is similar with
that of traditional induction generator. Both of the rotor side con-
verter (RSC) and the grid side converter (GSC) are controlled via
twocascaded control loops. In general, theRSC controller is designed
to extract maximum power from the wind and to regulate the reac-
tive power. The GSC controller regulates the dc-link voltage and the
reactive power exchanged between the GSC and the grid.

The complete DAEs of a DFIG contain 14 differential equations
and 16 algebraic equations. The differential equations are shown
as follows:
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2Hg _xg ¼ KtghS=Tbase � Te � Dtgðxbasexg �xtÞ=Tbase ð3Þ

_x1 ¼ KI1ðPref � PgenÞ ð4Þ

_x2 ¼ KI2ðKP1ðPref � PgenÞ þ x1 � IqrÞ ð5Þ

_x3 ¼ KI3ðQref � QgenÞ ð6Þ

_x4 ¼ KI4ðKP3ðQref � QgenÞ þ x3 � IdrÞ ð7Þ

_Vdc ¼ ½VdgIdg þ VqgIqg � ðVdrIdr þ VqrIqrÞ�=CdVdc ð8Þ

_x5 ¼ KI5ðVdc ref � VdcÞ ð9Þ

_x6 ¼ KI6ðKP5ðVdc ref � VdcÞ þ x5 � IdgÞ ð10Þ

_x7 ¼ KI7ðQgrid ref � QgridÞ ð11Þ

_x8 ¼ KI8½KP7ðQgrid ref � QgridÞ þ x7 � Iqg � ð12Þ

Jt _xt ¼ Tw � KtghS � Dtgðxt �xbasexgÞ ð13Þ

_hS ¼ xt �xbasexg ð14Þ
where the subscripts s; r; g; D; d and q indicate the stator, the
rotor side, the grid side, the terminal bus, the d-axis, and the q-
axis of the DFIG respectively. E0

q and E0
d are q-axis and d-axis tran-

sient rotor voltages, T 0
0 is the transient open-circuit time constant.

X0
s ¼ Xs � X2

m=Xr is the transient reactance. VDx and VDy denotes
the real and imaginary part of the stator voltage. Vdc is the voltage
of dc-link. Cd is the capacitance. For the two-mass shaft model, xg

andxt are the generator speed in per unit system and turbine speed
in physical unit system respectively. xbase ¼ 2pf=pkgear is the base
speed. Te is the electrical torque, Tw is the torque extracted from
the wind. Hg is the generator inertia and Jt is the moment of inertia
of wind turbine. Ktg is the shaft stiffness, Dtg is the shaft damping
coefficient and hs is the twist angle of shaft. The state variables x1
to x8 are related to RSC and GSC controllers. KP1; KI1 to KP8; KI8

are the controllers’ PI parameters. Pref is obtained for the MPPT
curve, which is defined by

Pref ¼ Cx3
g ð15Þ

In this study, the coefficient C equals to 0.4552.
The mechanical torque applied to the wind turbine and the

electrical torque of the generator are defined respectively by

Tw ¼ 0:5qpR2Cpðk; hÞV3
w=xt ð16Þ

Te ¼ E0
qIqs þ E0

dIds ð17Þ
The computation of Tw depends on the power coefficient Cp, air

density q, turbine radius R, and wind velocity Vw. Cp is a function of
the turbine blade tip speed ratio k and the blade pitch angle h. As
the most concerned output, the generated active power of the DFIG
can be stated as:

Pgen ¼ E0
qIqs þ E0

dIds � I2ds þ I2qs
� 	

Rs þ VdgIdg þ VqgIqg � I2dg þ I2qg
� 	

Rg

ð18Þ
More details of the DFIG model can be found in Appendix A.

Linearized model of a wind farm

For system impact studies, an individual WTG will generally not
exert a significant influence on the dynamic behavior of power
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