On the complexity of Hilbert refutations for partition

S. Margulies ${ }^{\text {a }}$, S. Onn ${ }^{\text {b,1 }}$, D.V. Pasechnik ${ }^{\text {c, }}$,
${ }^{\text {a }}$ Department of Mathematics, United States Naval Academy, Annapolis, MD, United States
${ }^{\mathrm{b}}$ Industrial Engineering \& Management, Technion - Israel Institute of Technology, Haifa, Israel
${ }^{\text {c }}$ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

A R T I C LE I N F O

Article history:

Received 16 August 2012
Accepted 21 June 2013
Available online 14 February 2014

Keywords:

Hilbert's Nullstellensatz
Linear algebra
Partition

Abstract

Given a set of integers W, the Partition problem determines whether W can be divided into two disjoint subsets with equal sums. We model the Partition problem as a system of polynomial equations, and then investigate the complexity of a Hilbert's Nullstellensatz refutation, or certificate, that a given set of integers is not partitionable. We provide an explicit construction of a minimum-degree certificate, and then demonstrate that the Partition problem is equivalent to the determinant of a carefully constructed matrix called the partition matrix. In particular, we show that the determinant of the partition matrix is a polynomial that factors into an iteration over all possible partitions of W.

Published by Elsevier Ltd.

1. Introduction

The NP-complete problem Partition (Garey and Johnson, 1979) is the question of deciding whether or not a given set of integers $W=\left\{w_{1}, \ldots, w_{n}\right\}$ can be broken into two sets, I and $W \backslash I$, such that the sums of the two sets are equal, or that $\sum_{w \in I} w=\sum_{w \in W \backslash I} w$. Since it is widely believed that $\mathrm{NP} \neq \mathrm{coNP}$, it is interesting to study various types of refutations, or certificates for the non-existence of a partition in a given set W.

In this paper, we study the certificates provided by Hilbert's Nullstellensatz (see Alon, 1992; Alon and Tarsi, 1992; De Loera et al., 2009b; Lovász, 1994; Onn, 2004 and references therein). Given

[^0]an algebraically-closed field \mathbb{K} and a set of polynomials $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, Hilbert's Nullstellensatz states that the system of polynomial equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution if and only if there exist polynomials $\beta_{1}, \ldots, \beta_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $1=\sum_{i=1}^{s} \beta_{i} f_{i}$. We measure the complexity of a given certificate in terms of the size of the β coefficients, since these are the unknowns we must discover in order to demonstrate the non-existence of a solution to $f_{1}=f_{2}=\cdots=$ $f_{s}=0$. Thus, we measure the degree of a Nullstellensatz certificate as $d=\max \left\{\operatorname{deg}\left(\beta_{1}\right), \ldots, \operatorname{deg}\left(\beta_{s}\right)\right\}$.

There is a well-known connection between Hilbert's Nullstellensatz and a particular sequence of linear algebra computations. These sequences have been studied from both a theoretical perspective (Buss and Pitassi, 1996; De Loera et al., 2009b), and a computational perspective (De Loera et al., 2009a, 2011). When the polynomial ideal contains $x_{i}^{2}-x_{i}$ for each variable (thus forcing the variety to contain only $0 / 1$ points), these sequences have also been explored as algebraic proof systems (Beame et al., 1996; Clegg et al., 1996; Impagliazzo et al., 1999; Razborov, 1998). Additionally, D. Grigoriev demonstrates a linear lower bound for the knapsack problem in Grigoriev (2001) (see also Grigoriev et al., 2002), and Buss and Pitassi (1996) show that a polynomial system loosely based upon the "pigeon-hole principle" requires a $\lfloor\log n\rfloor-1$ Nullstellensatz degree certificate. However, when the system of polynomial equations f_{1}, \ldots, f_{s} models an NP-complete problem, the degree d is likely to grow at least linearly with the size of the underlying NP-complete instance (Margulies, 2008). In other words, as long as $\mathrm{P} \neq \mathrm{NP}$, the certificates should be hard to find (i.e., the size of the linear systems involved should be exponential in the size of the underlying instance), and as long as $\mathrm{NP} \neq \mathrm{coNP}$, the certificates should be hard to verify (i.e., the certificates should contain an exponential number of monomials).

For example, consider the NP-complete problem of finding an independent set of size k in a graph G. Recall that an independent set is a set of pairwise non-adjacent vertices. This problem was modeled by Lovász (1994) as a system of polynomial equations as follows:

$$
\begin{array}{ll}
x_{i}^{2}-x_{i}=0, & \text { for every vertex } i \in V(G), \\
x_{i} x_{j}=0, & \text { for every edge }(i, j) \in E(G),
\end{array} \quad \text { and } \quad-k+\sum_{i=1}^{n} x_{i}=0
$$

Clearly, this system of polynomial equations has a solution if and only if the underlying graph G has an independent of size k. For example, consider the Turán graph $T(5,3)$. By inspection, we see that size of the largest independent set in $T(5,3)$ is two. Therefore, there is no independent set of size three, and using the connection between Hilbert's Nullstellensatz and linear algebra (described more thoroughly in Section 3), De Loera et al. (2009b) produce the following certificate:

Turán graph $T(5,3)$

$$
\begin{aligned}
& \left(\frac{1}{3} x_{4}+\frac{1}{3} x_{2}+\frac{1}{3}\right) x_{1} x_{3}+\left(\frac{1}{3} x_{2}+\frac{1}{3}\right) x_{1} x_{4}+\left(\frac{1}{3} x_{2}+\frac{1}{3}\right) x_{1} x_{5} \\
& \quad+\left(\frac{1}{3} x_{4}+\frac{1}{3}\right) x_{2} x_{3}+\left(\frac{1}{3}\right) x_{2} x_{4}+\left(\frac{1}{3}\right) x_{2} x_{5} \\
& \quad+\left(\frac{1}{3} x_{4}+\frac{1}{3}\right) x_{3} x_{5}+\left(\frac{1}{3}\right) x_{4} x_{5}+\left(\frac{1}{3} x_{2}+\frac{1}{6}\right)\left(x_{1}^{2}-x_{1}\right) \\
& \quad+\left(\frac{1}{3} x_{1}+\frac{1}{6}\right)\left(x_{2}^{2}-x_{2}\right)+\left(\frac{1}{3} x_{4}+\frac{1}{6}\right)\left(x_{3}^{2}-x_{3}\right) \\
& \quad+\left(\frac{1}{3} x_{3}+\frac{1}{6}\right)\left(x_{4}^{2}-x_{4}\right)+\left(\frac{1}{6}\right)\left(x_{5}^{2}-x_{5}\right) \\
& \quad+\underbrace{\left(-\frac{1}{3}\left(x_{1} x_{2}+x_{3} x_{4}\right)-\frac{1}{6}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)-\frac{1}{3}\right)}_{\beta_{1}} \\
& \quad \times\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}-3\right)=1 .
\end{aligned}
$$

The combinatorial interpretation of this algebraic identity is unexpectedly clear: the size of the largest independent set is the degree of the Nullstellensatz certificate (i.e., the largest monomial

https://daneshyari.com/en/article/401151

Download Persian Version:

https://daneshyari.com/article/401151

Daneshyari.com

[^0]: E-mail addresses: margulie@usna.edu (S. Margulies), onn@ie.technion.ac.il (S. Onn), dima@ntu.edu.sg (D.V. Pasechnik).
 1 Research of this author was supported in part by a grant from the Israel Science Foundation.
 2 Research of this author was supported in part by Singapore MOE Tier 2 Grant MOE2011-T2-1-090 (ARC 19/11).

