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Given a set of integers W , the Partition problem determines
whether W can be divided into two disjoint subsets with equal
sums. We model the Partition problem as a system of polynomial
equations, and then investigate the complexity of a Hilbert’s
Nullstellensatz refutation, or certificate, that a given set of integers
is not partitionable. We provide an explicit construction of a
minimum-degree certificate, and then demonstrate that the
Partition problem is equivalent to the determinant of a carefully
constructed matrix called the partition matrix. In particular, we
show that the determinant of the partition matrix is a polynomial
that factors into an iteration over all possible partitions of W .

Published by Elsevier Ltd.

1. Introduction

The NP-complete problem Partition (Garey and Johnson, 1979) is the question of deciding whether
or not a given set of integers W = {w1, . . . , wn} can be broken into two sets, I and W \ I , such that
the sums of the two sets are equal, or that

∑
w∈I w = ∑

w∈W \I w . Since it is widely believed that
NP �= coNP, it is interesting to study various types of refutations, or certificates for the non-existence
of a partition in a given set W .

In this paper, we study the certificates provided by Hilbert’s Nullstellensatz (see Alon, 1992;
Alon and Tarsi, 1992; De Loera et al., 2009b; Lovász, 1994; Onn, 2004 and references therein). Given
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an algebraically-closed field K and a set of polynomials f1, . . . , f s ∈ K[x1, . . . , xn], Hilbert’s Nullstel-
lensatz states that the system of polynomial equations f1 = f2 = · · · = f s = 0 has no solution if and
only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 = ∑s

i=1 βi f i . We measure the
complexity of a given certificate in terms of the size of the β coefficients, since these are the un-
knowns we must discover in order to demonstrate the non-existence of a solution to f1 = f2 = · · · =
f s = 0. Thus, we measure the degree of a Nullstellensatz certificate as d = max{deg(β1), . . . ,deg(βs)}.

There is a well-known connection between Hilbert’s Nullstellensatz and a particular sequence of
linear algebra computations. These sequences have been studied from both a theoretical perspective
(Buss and Pitassi, 1996; De Loera et al., 2009b), and a computational perspective (De Loera et al.,
2009a, 2011). When the polynomial ideal contains x2

i − xi for each variable (thus forcing the variety to
contain only 0/1 points), these sequences have also been explored as algebraic proof systems (Beame
et al., 1996; Clegg et al., 1996; Impagliazzo et al., 1999; Razborov, 1998). Additionally, D. Grigoriev
demonstrates a linear lower bound for the knapsack problem in Grigoriev (2001) (see also Grigoriev
et al., 2002), and Buss and Pitassi (1996) show that a polynomial system loosely based upon the
“pigeon-hole principle” requires a �log n� − 1 Nullstellensatz degree certificate. However, when the
system of polynomial equations f1, . . . , f s models an NP-complete problem, the degree d is likely to
grow at least linearly with the size of the underlying NP-complete instance (Margulies, 2008). In other
words, as long as P �= NP, the certificates should be hard to find (i.e., the size of the linear systems
involved should be exponential in the size of the underlying instance), and as long as NP �= coNP,
the certificates should be hard to verify (i.e., the certificates should contain an exponential number of
monomials).

For example, consider the NP-complete problem of finding an independent set of size k in a
graph G . Recall that an independent set is a set of pairwise non-adjacent vertices. This problem was
modeled by Lovász (1994) as a system of polynomial equations as follows:

x2
i − xi = 0, for every vertex i ∈ V (G),

xi x j = 0, for every edge (i, j) ∈ E(G),
and −k +

n∑
i=1

xi = 0.

Clearly, this system of polynomial equations has a solution if and only if the underlying graph
G has an independent of size k. For example, consider the Turán graph T (5,3). By inspection, we
see that size of the largest independent set in T (5,3) is two. Therefore, there is no independent
set of size three, and using the connection between Hilbert’s Nullstellensatz and linear algebra (de-
scribed more thoroughly in Section 3), De Loera et al. (2009b) produce the following certificate:

Turán graph T (5,3)
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︸ ︷︷ ︸

β1

× (x1 + x2 + x3 + x4 + x5 − 3) = 1.

The combinatorial interpretation of this algebraic identity is unexpectedly clear: the size of the
largest independent set is the degree of the Nullstellensatz certificate (i.e., the largest monomial
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