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In this paper, we present a new method for computing bounded-
degree factors of lacunary multivariate polynomials. In particular 
for polynomials over number fields, we give a new algorithm 
that takes as input a multivariate polynomial f in lacunary 
representation and a degree bound d and computes the irreducible 
factors of degree at most d of f in time polynomial in the lacunary 
size of f and in d. Our algorithm, which is valid for any field of 
zero characteristic, is based on a new gap theorem that enables 
reducing the problem to several instances of (a) the univariate case 
and (b) low-degree multivariate factorization.
The reduction algorithms we propose are elementary in that they 
only manipulate the exponent vectors of the input polynomial. 
The proof of correctness and the complexity bounds rely on the 
Newton polytope of the polynomial, where the underlying valued 
field consists of Puiseux series in a single variable.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The factorization of polynomials is a well-studied subject in symbolic computation. Although there 
exist effective fields in which testing irreducibility of polynomials is undecidable (Fröhlich and Shep-
herdson, 1955), the irreducible factorization of univariate or multivariate polynomials can be com-
puted in time polynomial in the degree of the input polynomial for many base fields. Without claim 
of exhaustiveness, one can cite the cases of polynomials over rational numbers (Lenstra et al., 1982;
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Kaltofen, 1989) and algebraic number fields (Lenstra, 1983; Landau, 1985; Lenstra, 1987), or over 
finite fields (Berlekamp, 1967). From a somewhat different perspective, one can also compute the 
factorization in an extension of the base field, such as (approximate) factorization in the real or com-
plex numbers (Pan, 2002; Kaltofen et al., 2008) or absolute factorization, that is factorization over an 
algebraic closure of the base field (Chèze and Galligo, 2005).

The purpose of this paper is to propose polynomial-time algorithms when the input polynomial is 
given in lacunary representation, that is as a list of nonzero monomials. These algorithms have com-
plexity logarithmic in the degree.1 Note that in lacunary representation, even evaluating a polynomial 
over an input is intractable: For instance, the monomial Xd has lacunary size O (log d) while its eval-
uation on the input 2 is an integer of size d. More generally, testing the irreducibility of lacunary 
polynomials or computing the greatest common divisor of two lacunary polynomials are NP-hard 
problems (Plaisted, 1977; Karpinski and Shparlinski, 1999; Kaltofen and Koiran, 2005). This motivates 
refining our ambitions and computing only a partial factorization of the input polynomial, namely the 
irreducible factors of bounded degree.

1.1. Previous work

Cucker et al. (1999) gave an algorithm to compute the integer roots of univariate integer poly-
nomials in time polynomial in the lacunary representation. This result was generalized by Lenstra
(1999) who described an algorithm to compute the bounded-degree factors of polynomials over 
number fields. His algorithm takes as input a description of the number field by means of an 
irreducible polynomial with integer coefficients in dense representation, the polynomial to factor 
in lacunary representation, and a bound on the degree of the factors it computes. The complex-
ity is polynomial in the size of the input and in the degree bound (rather than in its bit-size). 
Then, Kaltofen and Koiran (2005) generalized this result to the computation of linear factors of bi-
variate polynomials over the rational numbers, and then to the computation of bounded-degree 
factors of multivariate polynomials over number fields (Kaltofen and Koiran, 2006). Seemingly in-
dependently of this latest result, Avendaño et al. (2007) generalized the first result of Kaltofen and 
Koiran (2005) and gave an algorithm to compute the bounded-degree factors of bivariate polyno-
mials over number fields. They also explained how to compute the bounded-degree factors with 
at least three monomials over an algebraic closure of the rational numbers. Note that the bino-
mial factors include univariate linear factors and the number of such factors cannot be polyno-
mially bounded in the logarithm of the degree. We proposed another algorithm for the computa-
tion of the multilinear factors in the bivariate and multivariate cases (Chattopadhyay et al., 2013;
Chattopadhyay et al., submitted for publication). Since it relies on Lenstra’s algorithm for univariate 
factors, it is valid in full generality over number fields only, though our approach works in more gen-
eral settings and allow for partial results over any fields of characteristic zero and to some extent in 
positive characteristic. All these results are based on a technique, due to Cucker et al. (1999), that 
consists in finding gaps in the input polynomial (cf. next section).

Avendaño (2009) proposed a different technique to test whether a given linear factor divides a 
lacunary bivariate polynomial, again over number fields. To our knowledge, his approach does not 
allow to compute the factors. It is based on a bound on the number of real roots of the intersection 
of a lacunary polynomial with a line. This latter result has been extended to the intersection of a 
lacunary polynomial with a low-degree polynomial by Koiran et al. (2015). It appears that Avendaño’s 
method could be combined with this more recent result to obtain an algorithm that tests whether 
a given low-degree polynomial divides a lacunary bivariate polynomial. Nevertheless this algorithm 
would only work with some low-degree polynomials, since it requires in particular the polynomial to 
have real roots.

Let us finally mention two other results. Sagraloff (2014) gave an algorithm to compute the real 
roots of an integer polynomial with arithmetic complexity polynomial in the size of the lacunary rep-

1 The lacunary representation is also known as sparse representation in the literature. Yet is customary to use the term 
lacunary for algorithms of complexity logarithmic in the degree, and sparse for algorithms of complexity polynomial in the 
degree.
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