
Designing peer-to-peer distributed user interfaces: Case studies
on building distributed applications

Eli Raymond Fisher, Sriram Karthik Badam, Niklas Elmqvist n

School of Electrical & Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA

a r t i c l e i n f o

Article history:
Received 27 August 2012
Received in revised form
6 August 2013
Accepted 28 August 2013
Communicated by E. Motta
Available online 7 September 2013

Keywords:
Distributed user interfaces
Case studies
Design principles
Lessons learned
Implementation
DUI toolkits

a b s t r a c t

Building a distributed user interface (DUI) application should ideally not require any additional effort
beyond that necessary to build a non-distributed interface. In practice, however, DUI development is
fraught with several technical challenges such as synchronization, resource management, and data
transfer. In this paper, we present three case studies on building distributed user interface applications:
a distributed media player for multiple displays and controls, a collaborative search system integrating
a tabletop and mobile devices, and a multiplayer Tetris game for multi-surface use. While there exist
several possible network architectures for such applications, our particular approach focuses on peer-to-
peer (P2P) architectures. This focus leads to a number of challenges and opportunities. Drawing from
these studies, we derive general challenges for P2P DUI development in terms of design, architecture,
and implementation. We conclude with some general guidelines for practical DUI application develop-
ment using peer-to-peer architectures.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Parallelism—both on the local computer using multiple cores
(Blake et al., 2009), as well as distributed across multiple virtual
machines in the cloud (Grossman, 2009)—has become the de facto
solution to today's computational problems when Moore's law no
longer is able to help us stay abreast of the current data deluge
facing society. However, the same limitations are also now starting
to be felt in the user interface aspect of computer systems: while
displays grow in size and shrink in price, the standard computers
managing all these pixels are unable to cope. Furthermore, even as
the number of mobile, embedded, and ubiquitous devices in our
physical surroundings increases, we still do not have standard and
widespread software infrastructures for binding all of these
devices together into single, coherent interfaces where devices
can reinforce instead of competing with each other.

Distributed user interfaces (DUIs) is an emerging research field
studying this type of user interface architecture where compo-
nents are distributed across different hardware devices in space
and in time (Elmqvist, 2011a; Gallud et al., 2011). Unfortunately,
designing a distributed user interface is an order of magnitude
more difficult than designing a standard single-device user inter-
face due to issues such as synchronization, resource management,

and data transfer. In practice, even if the literature of DUI systems
is already rich with prime examples of distributed and situated
interaction (e.g. Gjerlufsen et al., 2011; Marquardt et al., 2011;
Jetter et al., 2011), there still exists very few concrete guidelines on
how to design and build a distributed user interface application
from the ground up. Beginning DUI designers are essentially left
only with the alternative of trying to apply their knowledge from
traditional user interfaces to the distributed setting.

In this paper, we address this shortcoming by deriving chal-
lenges, solutions, and design guidelines for developing DUI systems.
While this treatment is inspired by the literature on distributed
applications, we draw specifically from three in-depth case studies
of DUI applications that we have built recently:

� SHARD: A distributed user interface media player designed for
playing back media across multiple surfaces, speakers, and
playback controls;

� MP-TETRIS: A multiplayer Tetris game designed for collaborative
play across multiple input and output surfaces; and

� BEMVIEWER: A collaborative search system for multivariate data
integrating both a digital tabletop and several mobile devices.

Informed by these three case studies, we discuss many of the
common problems as well as their solutions encountered when
designing DUI systems. Furthermore, we also enumerate general
guidelines for designing, implementing, and evaluating DUI sys-
tems. All three of these case studies are based on a peer-to-peer

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

1071-5819/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011

n Corresponding author. Tel.: þ1 765 494 0364; fax: þ1 765 494 6951.
E-mail addresses: fisher55@purdue.edu (E.R. Fisher), sbadam@purdue.edu

(S.K. Badam), elm@purdue.edu, niklas.elmqvist@gmail.com (N. Elmqvist).

Int. J. Human-Computer Studies 72 (2014) 100–110

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.08.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.08.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.08.011&domain=pdf
mailto:fisher55@purdue.edu
mailto:sbadam@purdue.edu
mailto:sbadam@purdue.edu
mailto:elm@purdue.edu
mailto:niklas.elmqvist@gmail.com
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011


(P2P) network architecture. Other network architectures have also
been successfully applied to DUI development, particularly based
on a client/server model (e.g. Bharat and Cardelli, 1995; Equalizer;
Humphreys et al., 2002; Jetter et al., 2012; Nacenta et al., 2007).
We delimit our treatment in this work to the unique challenges
and opportunities afforded by a P2P architecture.

The remainder of this paper is structured as follows: We first
introduce the three case studies and motivating examples for this
paper. We then review the related work in distributed user
interfaces, content redirection, and collaborative spaces. This litera-
ture review sets the stage for discussing the challenges for our case
studies in particular, and distributed user interface applications in
general. We describe the solutions we derived for our example
applications, and how these were implemented. Finally, we draw
upon the three case studies as well as the literature to discuss and
formalize a set of design guidelines for building DUIs. We close the
paper with our conclusions and ideas for future work.

2. Case studies

Here we introduce each of the three motivating case studies
that inspired this work. We also discuss the common usage
scenarios, requirements, and design parameters for all three case
studies. Following this section, we describe in more detail the
challenges (Section 4) associated with DUI applications, as well as
the concrete solutions (Section 5) we derived in meeting these
challenges. We then generalize these ideas into guidelines and
implications for design (Section 6).

2.1. Shard: a distributed media player

Rich device ecosystems are becoming increasingly common as
mobile and ubiquitous computing are being embedded in our
physical surroundings (Gallud et al., 2011; Weiser, 1991). An initial
case study might focus on harnessing these device ecosystems for
simple media playback. SHARD1 is a truly distributed media player
where digital media such as video, audio, and images would be
entirely decoupled from its playback, allowing for highly flexible
playback and control configurations.

2.2. MP-Tetris: a multi-player/multi-surface game

While the Shard case study above showcases many basic
requirements of a distributed user application, it naturally does
not cover the whole spectrum of possible applications. In parti-
cular, like many user applications, Shard is user-driven, which
means that it merely responds to user input events such as button
presses and menu selections. With the MP-TETRIS case study, our
intent was to capture active simulation logic (a game engine
automatically moving falling Tetris pieces) that is asymmetrically
distributed in the system (only one participating peer will run the
game engine). This gives rise to the challenge of transferring logic
to other participants if the original peer disconnects or crashes.

Thus, MP-Tetris is a collaborative multiplayer Tetris game
designed to be run on any configuration of display surfaces using
any combination of input surfaces. It is cooperative in the sense
that players must work together to eliminate lines on the playing
field according to the classic Tetris, i.e., by filling lines completely
with blocks. This task is made more challenging by the fact that
pieces fall in real-time from the top of the screen towards its

bottom, and that player pieces can optionally be subject to
collisions.

2.3. BEMViewer: collaborative search on heterogeneous devices

MP-Tetris is a cooperative game, but collaboration is never-
theless not its main focus. In order to also capture any unique
challenges and solutions generated by collaborative settings, we
included the BEMVIEWER system as a case study as well. BEM is short
for Branch-Explore-Merge (McGrath et al., 2012) and is a protocol
for collaborative search in multivariate datasets inspired by asyn-
chronous revision control systems such as CVS, git, and Subversion.
The protocol allows users to branch off from the current public
query shared between all participants, explore data privately, and
then merge back any new findings to the public state.

In validating the BEM protocol, we implemented a DUI system
called BEMViewer (Fig. 1). BEMViewer allocates the public shared
state to a common display, such as a digital tabletop device, and
uses mobile devices for the private state of each participating user.
While we have presented the BEM protocol in a previous paper
(McGrath et al., 2012), our focus in the present paper is on the
software engineering aspects of the BEMViewer, which have not
been previously published.

2.4. Common usage scenarios

Some usage scenarios we envisioned for the case studies
include the following:

� A display wall consisting of multiple tiled LCDs (Fig. 2(a)) and
multiple computers interacting with digital media that spans
all of the displays;

� An output device displaying content located on another com-
puter on the network without the need for a preconfigured
server setup; and

� Two or more mobile devices rendering the same content that
are placed side by side to form a larger picture spanning all of
the displays (Fig. 2(b)).

For example, two friends may want to place their tablets side
by side to create a larger combined screen when playing MP-Tetris
together. The playing field will now be split to span both screens
instead of being replicated across both. A user may want to
snuggle up in his bed with a tablet to watch an old DVD movie
that he has loaded into his home desktop computer. Shard will
now seamlessly stream the movie from the desktop computer to
the user's tablet using the wireless network. Finally, a family may
want to gather around their digital kitchen table to plan a trip by
collaboratively searching for destinations, hotels, and restaurants
that fit everyone's preferences. Here, the BEMViewer tool will
allow the family members to work both independently on their
personal mobile devices, as well as collectively on the multitouch
kitchen table, to find an optimal destination in an efficient and
timely manner.

The common theme for all of these scenarios is that they
involve multiple (more than one) devices. More specifically, inter-
action in these use cases is distributed across different combina-
tions of input, output, platform, space, and time (Elmqvist, 2011a).
Managing individual devices in such setups becomes increasingly
tedious and error-prone as the number of devices increases. There-
fore, a common goal for all these scenarios is to minimize the setup
and initialization overhead involved in launching and controlling
these device environments.

1 The name communicates our conceptual model of each display surface
representing one of the multiple shards of glass that all reflect the same digital
media being played.

E.R. Fisher et al. / Int. J. Human-Computer Studies 72 (2014) 100–110 101



Download English Version:

https://daneshyari.com/en/article/401902

Download Persian Version:

https://daneshyari.com/article/401902

Daneshyari.com

https://daneshyari.com/en/article/401902
https://daneshyari.com/article/401902
https://daneshyari.com

