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a b s t r a c t 

In this paper a novel Genetic Fuzzy Rule-based Classification System, named DECO 3 R ( D ifferential 

E volution based Co operative and Co mpeting learning of Co mpact F R BCS), is proposed. DECO 3 R follows 

the genetic cooperative - competitive learning (GCCL) approach and uses Differential Evolution as its 

learning algorithm. In this frame, every chromosome encodes a single fuzzy rule. The proposed AdaBoost- 

based Fuzzy Token Competition (FTC) method is employed to deal with the cooperation - competition 

problem, an integral part to all GCCL algorithms. DECO 3 R learns clear, precise and predictive rules where 

the fuzzy sets in the premise part are consecutive. The experimental component analysis demonstrates 

that DE as a learning algorithm outperforms a simple Genetic Algorithm. Additionally, the novel FTC 

method exceeds the performance of other similar techniques. The experimental comparative analysis 

highlights the robust performance of DECO 3 R compared to other rule learning algorithms, both in terms 

of accuracy and of structural complexity. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The most instrumental field regarding the applications of the 

Genetic Fuzzy Systems (GFSs) [1,2] is the development of Fuzzy 

Rule-based Systems (FRBSs) using Evolutionary Algorithms (EAs). 

FRBSs deal with linguistic IF-then type of rules, which are highly 

intuitive and interpretable by human beings. FRBSs pertaining to 

classification problems where non-fuzzy input vectors are to be as- 

signed to one of a given set of classes, are called Fuzzy Rule-based 

Classification Systems (FRBCSs) [3] . The generation of FRBCSs for 

high dimensional datasets is challenging, considering the exponen- 

tial increase of the possible fuzzy rules as the feature space in- 

creases. The incorporation of EAs (most typically of Genetic Algo- 

rithms) in FRBSs enables the rule base to be formed in a construc- 

tive and automatic way even for highly dimensional datasets, due 

to the their increased searching capabilities [4] . It further paved 

the way to improved structural complexity of the rule bases, by 

implementing feature selection schemes and thereby reducing the 

total number of features required. 
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Following the taxonomy proposed in [5] , methods encoding a 

rule in a single chromosome fall within the following three sub- 

categories (arranged in the order in which they were developed): 

1. The Michigan approach [6] (also referred to as learning clas- 

sifier systems), wherein the set of rules is formed through the 

sequential observation of the training patterns. After the forma- 

tion, the rule base is tuned using an EA. UCS [7] is one of the 

most prominent examples of this method. The issue with this 

classical approach is that it does not resolve the cooperation - 

competition problem of the rules. 

2. The Iterative Rule Learning (IRL) approach [8,9] where the 

algorithm iteratively learns one rule per iteration, consequently 

multiple runs are required in order to create a rule base. The 

IRL approach removes at each iteration the covered training 

patterns to compel new rules to focus on the uncovered pat- 

terns. Thus, at each iteration a new population of chromosomes 

is formed which compete among themselves so that the best 

chromosome is inserted into the rule set. The patterns covered 

adequately by the best chromosome are removed from the 

training set. In this approach, a mechanism must ensure that 

rules extracted at later stages are not conflicting with previ- 

ously removed training patterns. It must be further noted that 

in classification problems, IRL learns one class label at a time. 

The drawback is that the ordering of the learned rules is not 

optimal as it relies on which class is learned first. Prominent 
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examples following the IRL approach are the MOGUL [10] , 

SLAVE [11] and FaIRLiC [12] algorithms. 

3. The Genetic Cooperative Competitive Learning (GCCL) approach 

[13,14] , in which the whole population encodes the rule base. 

In contrast to IRL, the rule base is not populated iteratively, but 

rather the whole population of chromosomes is the rule base. 

For classification problems, this allows the learning of all class 

labels simultaneously. Moreover, the cooperation - competition 

problem must be solved internally at each generation when the 

fitness of each chromosome is calculated. Considering that the 

whole set of rules is available, the rules can be re-ordered in a 

more optimal way as opposed to the IRL approach. A notable al- 

gorithm following the GCCL approach is GP-COACH [15] , which 

uses Genetic Programming as its Evolutionary Algorithm, and a 

crisp Token Competition method to impel the rules to cooper- 

ate and compete with each other. Various other methodologies 

follow this approach [16–18] . 

In this paper, we propose a novel GFRBCS, called DECO 3 R, utiliz- 

ing Differential Evolution (DE) [19,20] as its evolutionary learning 

algorithm and following the GCCL approach. The motivation be- 

hind the development of DECO 3 R was to create a FRBCS which is 

a) able to handle high and very high dimensional data, and b) pro- 

vide both an accurate and a compact FRBCS. 

To this end, we elected to use DE as the EA in the FRBCS. DE 

is considered to be one of the most powerful optimization algo- 

rithms for real-valued problems in current use [21] . DE exhibits 

fast convergence [22] , the space complexity is relatively low and 

has relatively few control parameters [19] . Additionally it is highly 

customizable, which allows it to be robust. It has recently been 

applied in the optimization of Neuro-Fuzzy Systems [23] , and for 

solving the joint replenishment problem [24,25] . Furthermore, DE 

has been successfully applied in conjunction with other algorithms, 

such as the Artificial Bee Colony algorithm [26] , the Fruit Fly Opti- 

mization Algorithm [27] , and TOPSIS and Tabu Search [28] . 

There are mainly two major novelties incorporated into 

DECO 3 R: 

(1) The introduction of the DE algorithm as the EA in a FR- 

BCS. Customarily, FRBCSs use a Genetic Algorithm as the EA. 

The aforementioned assets of DE attest to its adoption as a 

learning algorithm for FRBCSs, and in particular when deal- 

ing with high dimensional data. In Subsection 4.1 an ex- 

perimental analysis is performed which statistically demon- 

strates the superiority of DE over the conventional approach. 

(2) The novel Fuzzy Token Competition mechanism, which en- 

forces the competition and cooperation among the rules. 

It involves two discrete tasks: a) the ordering of the rules 

based on their individual fitness, calculated in the weighted 

pattern space, using the principles of the AdaBoost approach 

[29–31] and b) the discarding of the non significant rules. 

The rest of the paper is organized as follows. Section 2 de- 

scribes the Differential Evolution algorithm. In Section 3 the pro- 

posed DECO 3 R method is presented. The experimental results are 

given in Section 4 . Finally, concluding remarks are provided in 

Section 5 . 

2. The Differential Evolution algorithm 

The Differential Evolution (DE) algorithm was originally de- 

veloped by R. Storn and K. V. Price in 1995 [19] . The purpose 

of DE is to optimize (either minimize or maximize) a given fit- 

ness function. 1 More formally, the optimization task is to find a 

1 Without a loss of generality, for the extent of this document we will assume 

that the task is to minimize the fitness function. 
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Fig. 1. The main stages of the DE algorithm. 
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Fig. 2. Mutation of a chromosome using DE in � 2 . 

�
 x ∗ = [ x 1 , x 2 , . . . , x D ] 

T that minimizes a fitness function f ( � x ) with f : 

�⊆� 

D → � such that f ( � x ∗) ≤ f ( � x ) ∀ 

�
 x ∈ �. When no constraints 

exist, it follows that � = � 

D . The main stages of the DE algorithm 

are presented in Fig. 1 . 

The algorithm uses a population of NP real-valued parameter 

vectors (chromosomes) with a dimension of D (genes). The task is 

to find the best solution within a G max generations. The i -th chro- 

mosome is encoded as follows: 

�
 x i,G = [ x 1 ,i,G , x 2 ,i,G , x 3 ,i,G , . . . , x D,i,G ] (1) 

where G denotes the generation index. 

2.1. DE operators 

2.1.1. Mutation 

The novelty of the DE algorithm is that it uses the difference 

between vectors in the mutation process. At each generation, NP 

mutated vectors (also called donor vectors and denoted by � v ) are 

created, deriving from the current population. They are created by 

applying a difference vector to a base vector . In its simplest form, 

the mutation is calculated as follows: three random and mutually 

exclusive indices ( r i 
1 
, r i 

2 
, r i 

3 
) are selected, that are also different from 

the target vector index i = 1 , . . . , NP , in order to create NP mutated 

vectors. The mutation is calculated as follows: 

�
 v i,G ︸︷︷︸ 

donor vector 

= 

�
 x r i 

1 
,G ︸︷︷︸ 

base vector 

+ F ·
difference vector ︷ ︸︸ ︷ 
( � x r i 

2 
,G − �

 x r i 
3 
,G ) (2) 

The difference is scaled using the scalar value of F , usually falling 

within the [0.4, 1] range. Greater values of F favor exploration of 

the space, since the perturbation applied is larger, while smaller 

ones favor exploitation, since the perturbation is smaller. A sim- 

ple implementation of the mutation scheme in � 

2 is presented in 

Fig. 2 . 

2.1.2. Crossover 

Every donor vector � v i,G exchanges some of its genes with the 

base vector � x 
r i 
1 
,G 

in order to form the trial vector, denoted by � u . In 

the DE literature, two forms of crossover are usually employed: the 

exponential crossover (also known as two-point modulo crossover) 

and the binomial crossover (also known as uniform crossover) [21] . 

Exponential crossover. Initially a random integer n within [1, D ] is 

selected, acting as the starting point of the operation. Afterwards, 

the length of the crossover operation is selected using Algorithm 1 , 

where U(0 , 1) denotes the uniform random distribution in the 
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