
Knowledge-Based Systems 105 (2016) 160–174

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

DECO 3

R: A Differential Evolution-based algorithm for generating

compact Fuzzy Rule-based Classification Systems

Nikolaos L. Tsakiridis a , John B. Theocharis a , ∗, George C. Zalidis b

a Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
b Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

a r t i c l e i n f o

Article history:

Received 21 July 2015

Revised 6 May 2016

Accepted 8 May 2016

Available online 9 May 2016

Keywords:

Fuzzy Rule-based Classification Systems

(FRBCS)

Differential Evolution

AdaBoost

Fuzzy Token Competition

Genetic Cooperative - Competitive Learning

(GCCL)

Genetic Tuning

a b s t r a c t

In this paper a novel Genetic Fuzzy Rule-based Classification System, named DECO 3 R (D ifferential

E volution based Co operative and Co mpeting learning of Co mpact F R BCS), is proposed. DECO 3 R follows

the genetic cooperative - competitive learning (GCCL) approach and uses Differential Evolution as its

learning algorithm. In this frame, every chromosome encodes a single fuzzy rule. The proposed AdaBoost-

based Fuzzy Token Competition (FTC) method is employed to deal with the cooperation - competition

problem, an integral part to all GCCL algorithms. DECO 3 R learns clear, precise and predictive rules where

the fuzzy sets in the premise part are consecutive. The experimental component analysis demonstrates

that DE as a learning algorithm outperforms a simple Genetic Algorithm. Additionally, the novel FTC

method exceeds the performance of other similar techniques. The experimental comparative analysis

highlights the robust performance of DECO 3 R compared to other rule learning algorithms, both in terms

of accuracy and of structural complexity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The most instrumental field regarding the applications of the

Genetic Fuzzy Systems (GFSs) [1,2] is the development of Fuzzy

Rule-based Systems (FRBSs) using Evolutionary Algorithms (EAs).

FRBSs deal with linguistic IF-then type of rules, which are highly

intuitive and interpretable by human beings. FRBSs pertaining to

classification problems where non-fuzzy input vectors are to be as-

signed to one of a given set of classes, are called Fuzzy Rule-based

Classification Systems (FRBCSs) [3] . The generation of FRBCSs for

high dimensional datasets is challenging, considering the exponen-

tial increase of the possible fuzzy rules as the feature space in-

creases. The incorporation of EAs (most typically of Genetic Algo-

rithms) in FRBSs enables the rule base to be formed in a construc-

tive and automatic way even for highly dimensional datasets, due

to the their increased searching capabilities [4] . It further paved

the way to improved structural complexity of the rule bases, by

implementing feature selection schemes and thereby reducing the

total number of features required.

∗ Corresponding author. Tel.: +302310996343.

E-mail addresses: tsakirin@ece.auth.gr (N.L. Tsakiridis), theochar@eng.auth.gr

(J.B. Theocharis), zalidis@agro.auth.gr (G.C. Zalidis).

Following the taxonomy proposed in [5] , methods encoding a

rule in a single chromosome fall within the following three sub-

categories (arranged in the order in which they were developed):

1. The Michigan approach [6] (also referred to as learning clas-

sifier systems), wherein the set of rules is formed through the

sequential observation of the training patterns. After the forma-

tion, the rule base is tuned using an EA. UCS [7] is one of the

most prominent examples of this method. The issue with this

classical approach is that it does not resolve the cooperation -

competition problem of the rules.

2. The Iterative Rule Learning (IRL) approach [8,9] where the

algorithm iteratively learns one rule per iteration, consequently

multiple runs are required in order to create a rule base. The

IRL approach removes at each iteration the covered training

patterns to compel new rules to focus on the uncovered pat-

terns. Thus, at each iteration a new population of chromosomes

is formed which compete among themselves so that the best

chromosome is inserted into the rule set. The patterns covered

adequately by the best chromosome are removed from the

training set. In this approach, a mechanism must ensure that

rules extracted at later stages are not conflicting with previ-

ously removed training patterns. It must be further noted that

in classification problems, IRL learns one class label at a time.

The drawback is that the ordering of the learned rules is not

optimal as it relies on which class is learned first. Prominent

http://dx.doi.org/10.1016/j.knosys.2016.05.013

0950-7051/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2016.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.05.013&domain=pdf
mailto:tsakirin@ece.auth.gr
mailto:theochar@eng.auth.gr
mailto:zalidis@agro.auth.gr
http://dx.doi.org/10.1016/j.knosys.2016.05.013

N.L. Tsakiridis et al. / Knowledge-Based Systems 105 (2016) 160–174 161

examples following the IRL approach are the MOGUL [10] ,

SLAVE [11] and FaIRLiC [12] algorithms.

3. The Genetic Cooperative Competitive Learning (GCCL) approach

[13,14] , in which the whole population encodes the rule base.

In contrast to IRL, the rule base is not populated iteratively, but

rather the whole population of chromosomes is the rule base.

For classification problems, this allows the learning of all class

labels simultaneously. Moreover, the cooperation - competition

problem must be solved internally at each generation when the

fitness of each chromosome is calculated. Considering that the

whole set of rules is available, the rules can be re-ordered in a

more optimal way as opposed to the IRL approach. A notable al-

gorithm following the GCCL approach is GP-COACH [15] , which

uses Genetic Programming as its Evolutionary Algorithm, and a

crisp Token Competition method to impel the rules to cooper-

ate and compete with each other. Various other methodologies

follow this approach [16–18] .

In this paper, we propose a novel GFRBCS, called DECO 3 R, utiliz-

ing Differential Evolution (DE) [19,20] as its evolutionary learning

algorithm and following the GCCL approach. The motivation be-

hind the development of DECO 3 R was to create a FRBCS which is

a) able to handle high and very high dimensional data, and b) pro-

vide both an accurate and a compact FRBCS.

To this end, we elected to use DE as the EA in the FRBCS. DE

is considered to be one of the most powerful optimization algo-

rithms for real-valued problems in current use [21] . DE exhibits

fast convergence [22] , the space complexity is relatively low and

has relatively few control parameters [19] . Additionally it is highly

customizable, which allows it to be robust. It has recently been

applied in the optimization of Neuro-Fuzzy Systems [23] , and for

solving the joint replenishment problem [24,25] . Furthermore, DE

has been successfully applied in conjunction with other algorithms,

such as the Artificial Bee Colony algorithm [26] , the Fruit Fly Opti-

mization Algorithm [27] , and TOPSIS and Tabu Search [28] .

There are mainly two major novelties incorporated into

DECO 3 R:

(1) The introduction of the DE algorithm as the EA in a FR-

BCS. Customarily, FRBCSs use a Genetic Algorithm as the EA.

The aforementioned assets of DE attest to its adoption as a

learning algorithm for FRBCSs, and in particular when deal-

ing with high dimensional data. In Subsection 4.1 an ex-

perimental analysis is performed which statistically demon-

strates the superiority of DE over the conventional approach.

(2) The novel Fuzzy Token Competition mechanism, which en-

forces the competition and cooperation among the rules.

It involves two discrete tasks: a) the ordering of the rules

based on their individual fitness, calculated in the weighted

pattern space, using the principles of the AdaBoost approach

[29–31] and b) the discarding of the non significant rules.

The rest of the paper is organized as follows. Section 2 de-

scribes the Differential Evolution algorithm. In Section 3 the pro-

posed DECO 3 R method is presented. The experimental results are

given in Section 4 . Finally, concluding remarks are provided in

Section 5 .

2. The Differential Evolution algorithm

The Differential Evolution (DE) algorithm was originally de-

veloped by R. Storn and K. V. Price in 1995 [19] . The purpose

of DE is to optimize (either minimize or maximize) a given fit-

ness function. 1 More formally, the optimization task is to find a

1 Without a loss of generality, for the extent of this document we will assume

that the task is to minimize the fitness function.

Initialization
Difference

based
Mutation

Crossover Selection

Fig. 1. The main stages of the DE algorithm.

X2

X1

�xri3,G

�xri2,G

�xri1,G

F · (�xri2,G
− �xri3,G

)

(�xri2,G
− �xri3,G

)
�vi,G

Fig. 2. Mutation of a chromosome using DE in � 2 .

�
 x ∗ = [x 1 , x 2 , . . . , x D]

T that minimizes a fitness function f (� x) with f :

�⊆�

D → � such that f (� x ∗) ≤ f (� x) ∀

�
 x ∈ �. When no constraints

exist, it follows that � = �

D . The main stages of the DE algorithm

are presented in Fig. 1 .

The algorithm uses a population of NP real-valued parameter

vectors (chromosomes) with a dimension of D (genes). The task is

to find the best solution within a G max generations. The i -th chro-

mosome is encoded as follows:

�
 x i,G = [x 1 ,i,G , x 2 ,i,G , x 3 ,i,G , . . . , x D,i,G] (1)

where G denotes the generation index.

2.1. DE operators

2.1.1. Mutation

The novelty of the DE algorithm is that it uses the difference

between vectors in the mutation process. At each generation, NP

mutated vectors (also called donor vectors and denoted by � v) are

created, deriving from the current population. They are created by

applying a difference vector to a base vector . In its simplest form,

the mutation is calculated as follows: three random and mutually

exclusive indices (r i
1
, r i

2
, r i

3
) are selected, that are also different from

the target vector index i = 1 , . . . , NP , in order to create NP mutated

vectors. The mutation is calculated as follows:

�
 v i,G ︸︷︷︸

donor vector

=

�
 x r i

1
,G ︸︷︷︸

base vector

+ F ·
difference vector ︷ ︸︸ ︷
(� x r i

2
,G − �

 x r i
3
,G) (2)

The difference is scaled using the scalar value of F , usually falling

within the [0.4, 1] range. Greater values of F favor exploration of

the space, since the perturbation applied is larger, while smaller

ones favor exploitation, since the perturbation is smaller. A sim-

ple implementation of the mutation scheme in �

2 is presented in

Fig. 2 .

2.1.2. Crossover

Every donor vector � v i,G exchanges some of its genes with the

base vector � x
r i
1
,G

in order to form the trial vector, denoted by � u . In

the DE literature, two forms of crossover are usually employed: the

exponential crossover (also known as two-point modulo crossover)

and the binomial crossover (also known as uniform crossover) [21] .

Exponential crossover. Initially a random integer n within [1, D] is

selected, acting as the starting point of the operation. Afterwards,

the length of the crossover operation is selected using Algorithm 1 ,

where U(0 , 1) denotes the uniform random distribution in the

Download English Version:

https://daneshyari.com/en/article/402119

Download Persian Version:

https://daneshyari.com/article/402119

Daneshyari.com

https://daneshyari.com/en/article/402119
https://daneshyari.com/article/402119
https://daneshyari.com

