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a b s t r a c t

Functional data type, which is an important data type, is widely prevalent in many fields such as eco-

nomics, biology, finance, and meteorology. Its underlying process is often seen as a continuous curve. The

classification process for functional data is a basic data mining task. The common method is a two-stage

learning process: first, by means of basis functions, the functional data series is converted into multivari-

ate data; second, a machine learning algorithm is employed for performing the classification task based

on the new representation. The problem is that a majority of learning algorithms are based on Euclidean

distance, whereas the distance between functional samples is L2 distance. In this context, there are three

very interesting problems. (1) Is seeing a functional sample as a point in the corresponding Euclidean

space feasible? (2) How to select an orthonormal basis for a given functional data type? (3) Which one

is better, orthogonal representation or non-orthogonal representation, under finite basis functions for the

same number of basis? These issues are the main motivation of this study. For the first problem, the-

oretical studies show that seeing a functional sample as a point in the corresponding Euclidean space

is feasible under the orthonormal representation. For the second problem, through experimental analy-

sis, we find that Fourier basis is suitable for representing stable functions(especially, periodic functions),

wavelet basis is good at differentiating functions with local differences, and data driven functional princi-

pal component basis could be the first preference especially when one does not have any prior knowledge

on functional data types. For the third problem, experimental results show that orthogonal representa-

tion is better than non-orthogonal representation from the viewpoint of classification performance. These

results have important significance for studying functional data classification.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have witnessed considerable improvements in

data acquisition technology and data storage abilities. As a result,

it has become imperative to classify individual systems in various

research fields based on one or more data series. The underlying

process of every data series is an unknown function (continuous

curve), called functional data. The classification process for func-

tional data is typically the same as that for their underlying gener-

ation functions.

At present, for the classification of functional data, there are

two types of commonly used methods. One involves construct-

ing functional classifiers, such as a functional support vector ma-
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chine (SVM) by means of kernel techniques [3,33,48] and func-

tional logistic regression [5,18,24,43,47,49], and the other is a two-

stage classification method [28]. For the second method, in the first

stage, usually, functional samples are represented in a finite di-

mensional functional subspace by means of basis functions; thus,

functional data with infinite dimension becomes multivariate data,

which consists of coefficients before the basis functions. In the sec-

ond stage, a classical learning algorithm for finite dimensional data

is used. The reason is that the high dimensionality of data series

renders many data mining methods ineffective and fragile [8]. This

obstacle is sometimes referred to as the “curse of dimensional-

ity” [14]. In most data series mining problems, there is a need for

dimensionality reduction and forming new data series represen-

tations [27]. It is required that the new representation preserves

sufficient information for solving data series mining problems cor-

rectly. Once the basis is chosen, the optimal value for the number

of basis functions can be derived from the data [48].
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Representing data series in the transformed domain is a com-

mon dimensionality reduction approach. Some of the popular

transformation techniques are Fourier transform [15,33,53] and

wavelet transform [11,16,32,37]. Functional principal component

analysis(FPCA) [10,21,29,39,43,46,54–56] is a popular technique

that uses statistical methods. Other methods include B-spline func-

tions [1,3,35,59], Mercer kernel transforms [36,38], radial basis

functions [4,5,26], etc.

In fact, the representation of functional data is essentially a

kind of approximation of itself. In the process of machine learn-

ing of functional data, a kind of structured representation using

basis functions is used to transform functional data into multivari-

ate data, and then, the distances between functional samples are

converted into the Euclidean distances between the corresponding

multivariate data. However, the representability of using the cor-

responding multivariate data to represent functional data, and the

rationality of using the distance between the corresponding two

multivariate data to replace the distance between two functional

samples have not been studied in detail. Therefore, the relationship

of different spaces is first introduced, and then the orthonormal

representation theory is employed to explain the representability

and rationality.

Theoretically, under orthonormal basis, for any two different

functional samples, the distance between them can be approxi-

mated based on the distance between their low-dimensional rep-

resentations, which is isomorphic to the corresponding Euclidean

distance. At this time, choosing an appropriate orthonormal basis

is still a problem. Therefore, three kinds of common orthonormal

basis and their differences are considered. The three kinds of or-

thonormal basis are normal Fourier basis, wavelet basis, and func-

tional principal component basis, the eigenequation of FPCA is de-

rived by means of variational theory.

It is well known that non-orthogonal representation can also

represent a functional data series as certain multivariate data.

Therefore, it is important to verify if orthogonal basis has a

stronger representation ability than non-orthogonal basis for func-

tional data under the same number of basis functions from the

viewpoint of classification performance.

In order to verify the representation ability of the above

orthonormal basis in classification, the extracted features(the

coefficient vector, which consists of coefficients before the

basis functions) of the functional data will be used in clas-

sification model construction. It has been pointed out in the

literature [17] that support vector machine(SVM) and random

forest are two preferred classification methods, and thus, Lib-

SVM [12] and RandomForest [9,44] are first used to classify

the functional data for three kinds of orthonormal representa-

tions. As other choices, logistic regression [29,40], K-nearest neigh-

bor [30,31], and artificial neuron network [34,41] will also be

used as classifiers for discriminating functional samples. Based on

these classifiers, we shall also compare the classification perfor-

mance of orthogonal representation with that of non-orthogonal

representation.

The main objective of this paper is to explain the rationality

behind converting functional samples into corresponding multi-

variate data that are to be used for training a classifier. At the

same time, from the point of view of experiments, we shall explain

that among the three basis candidates, Fourier basis is suitable for

representing stable signals(especially, periodic functions), wavelet

representation can yield better results than Fourier representation

for non-stationary signals, and orthonormal basis obtained through

functional principal components offers good representation ability

for some functional data with complex trend characteristics. Func-

tional principal component analysis (FPCA), in particular, can be

the first choice when people do not have any prior knowledge. Fur-

thermore, we also demonstrate that orthogonal basis is indeed bet-

Table 1

The observation form of functional data.

Sample t1 t2 ��� tp

X1 X1(t1) X1(t2) ��� X1(tp)

X2 X2(t1) X2(t2) ��� X2(tp)

� �
. . . �

XN XN(t1) XN(t2) ��� XN(tp)

ter than non-orthogonal basis from the viewpoint of classification

performance.

The remainder of this paper is organized as follows. Some

basic concepts of functional data and some approximation the-

ory under orthonormal representation are presented in Section 2.

Section 3 describes three kinds of common orthonormal repre-

sentations for functional data, and in particular, the eigenequa-

tion for functional principal component is derived using the

variational principle. Section 4 introduces several classification

methods including LibSVM, RandomForest, logistic regression, K-

nearest neighbor, and artificial neuron network. Furthermore, four

classification performance indexes such as the precision, the re-

call, F1 score, and the accuracy are introduced in detail. Section 5

provides numerical studies for feature extraction and classification

methods for functional data. In this section, we analyze the clas-

sification performance of three different kinds orthonormal basis,

point out which kind of orthonormal basis is appropriate to rep-

resent what type of functional data, and answer whether orthog-

onal representation is better than non-orthogonal representation

for classifying functional data for the same number of finite basis

functions. Section 6 concludes the paper with some remarks and

discussions.

2. Orthonormal representation for functional data

2.1. The basic concepts of functional data

Advances in data collection and storage have led to an increased

presence of functional data, whose graphical representations are

curves, images, or shapes [51]. The observation form of the func-

tional data is also a two-dimensional table, which is shown in

Table 1, in which Xi(t) (abbreviated as Xi), t ∈ I, i = 1, 2, . . . , N

is an underlying continuous and smooth function, and Xi ∈ L2(I),

where L2(I) is the space of the square-integrable functions de-

fined on the compact set I, X : I → R, (∫IX
2(t)dt)1/2 < ∞, R is the

real number space. At the same time, L2(I) is a separable Hilbert

space with the inner product < X,Y >= ∫
I X(t)Y (t)dt and the norm

‖X‖2 = (
∫

I X2(t)dt)1/2. Xi(tj) denotes the observed value for Xi(t) at

a discrete point tj for the ith functional sample.

To understand the L2(I) space, the relationship among different

spaces is first introduced. It is well known that the introduction of

the distance is for the purpose of studying the convergence. Peo-

ple, therefore, defined the metric space. In the metric space, the

distance between any two elements can be computed. If the con-

cept of completion (any Cauchy sequence is a convergent sequence

[58]) is introduced in the metric space, the space will become a

complete metric space.

However, the metric space only has a topological structure,

which restricts its application area. If a linear operation is in-

troduced to the metric space, a linear normal space [58] can be

obtained and the algebraic operation between elements can be

carried out. In this case, the distance is transformed into the

norm, which combines the metric and the linear operations per-

fectly. In other words, the linear normal space not only keeps its

topological structure but also maintains its algebraic structure. The
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