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a b s t r a c t

In three-way decision theory, all samples are divided into three regions: a positive region, a negative region,

and boundary regions. A lack of detailed information may make a definite decision impossible for samples

in boundary regions, and hence the third non-commitment option is used. Reducing boundary regions is a

new problem. In this paper, the multi-granular three-way decision (MGTD) algorithm is presented to reduce

boundary regions. At the beginning of the multi-granular process, samples are divided using the covering al-

gorithm, which does not need a threshold. Then pairs of heterogeneous points (HPs) are defined in boundary

regions to obtain diversity information. This detailed information is used to define attribute subsets. Even-

tually, boundary regions are further investigated using multiple-views of granularity. Each view corresponds

to an attribute subset. Experiments have shown that the MGTD algorithm is beneficial for reducing boundary

regions and improving classification precision in most cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the conventional two-way decision model, there are only two

options for a decision: positive or negative, regardless of whether in-

formation is lacking. This approach may result in wrong decisions

when the information is insufficient. To address this issue, Yao pro-

posed a three-way decision model, which extends two-way decision

theory by incorporating an additional choice: the boundary decision,

from Pawlak rough sets to probability rough sets (DTRS) [1–4]. Hence,

a sample is classified into the positive, negative, or boundary region

based on three-way decision theory. These classes can be interpreted

as acceptance, rejection, and uncertainty. In recent years, researchers

have focused on three-way decision theory, for example using new

probability rough sets [5], multi-granulation rough sets [6,7], multi-

granulation decision-theoretic rough sets [8], multi-granulation

rough set based covering [9], neighborhood-based multi-granulation

rough sets [10], and improved three-way decision models [11–18].

Three-way decision theory has been widely used in many applica-

tions such as spam filtering [19–21], text classification [22], medical
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diagnosis [23,24], management theory [25–27], social judgment the-

ory [28], paper review [29], risk preferences for decision-making [30],

oil exploration decisions [31], and automatic clustering [32–34].

The main superiority of three-way decision theory compared to

two-way decision theory is the utility of the boundary decision [1].

In three-way decision theory, the boundary decision is regarded as a

feasible decision choice when the available information for decision-

making is too limited to make a proper decision. This is similar to hu-

man decision-making strategy in practical decision problems. How-

ever, it is also a disadvantage of three-way decision theory that the

boundary regions need further investigation. Reducing boundary re-

gions poses a new problem [35].

Samples in boundary regions with a non-commitment decision

may be further investigated. Some researchers have focused on the

processing of boundary regions. Li and Zhou used the idea of a tri-

training algorithm [36] and proposed two tri-training algorithms,

TW and TR, to reduce boundary regions [35]. Yao proposed sequen-

tial three-way decisions to make a definite acceptance or rejec-

tion decision for uncertain samples [37]. These methods investigated

boundary regions using original information. However, samples were

placed into the boundary region because the original information

was not sufficient to decide. Therefore, more detailed information is

needed to make further decisions. In an effort to solve this problem,

the authors have proposed a method to obtain diversity information

from samples in boundary regions based on the constructive covering

algorithm(CCA).
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The CCA is a constructive supervised learning algorithm that maps

all samples in the data set to an n + 1-dimensional sphere Sn+1. A

three-way decision model based on the CCA was proposed by Zhang

and Xing [38] to overcome a major challenge with three-way decision

models. This challenge is the acquisition of a set of pairs of thresh-

olds (α, β). Thresholds are calculated by minimizing the decision loss

[1]. The CCA does not need thresholds α and β , but classifies samples

using their own characteristics. A cost-sensitive three-way decision

model based on the CCA (CCTDM) [39] and a robust three-way de-

cision model based on the CCA (RTDM) [40] have been proposed by

Zhang and Zou to improve performance.

Based on the CCA, pairs of heterogeneous points(HPs) are found

in boundary regions to obtain diversity information. This detailed in-

formation is used to define attribute subsets. Each attribute subset

corresponds to a view of granularity. Eventually, samples in bound-

ary regions are classified using different attribute subsets. Therefore,

boundary regions are mined in a multi-granular fashion.

The rest of this paper is organized as follows: in Section 2, related

research in the literature is introduced. In Section 3, the multiple-

views of granularity in the CCA are introduced in detail, and a multi-

granular three-way decision (MGTD) algorithm for boundary regions

is proposed. Section 4 presents the analysis of the experimental re-

sults, and conclusions are drawn in Section 5.

2. Related work

2.1. An overview of three-way decisions

In a three-way decision model, decision actions are denoted by

A = {aP, aN, aB}, representing POS, NEG, and BND decisions and called

positive, negative, and boundary regions respectively. The positive

region POS consists of those objects that are accepted as satisfying

the conditions, and the negative region NEG consists of those objects

that are rejected as not satisfying the conditions. BND decisions are

a third decision choice, which means that more information must be

collected before making a further precise decision.

In three-way decision theory, the data set is denoted as a decision

information table S = (U, At = C
⋃

D, {Va|a ∈ At}, {Ia|a ∈ At}) [41]. By

introducing a pair of thresholds (α, β), α�β , three regions can be

constructed as follows:

POS(α,β)(v) = {x ∈ U|v(x) � α}
NEG(α,β)(v) = {x ∈ U|v(x) � β}
BND(α,β)(v) = {x ∈ U|β ≺ v(x) ≺ α}
The cost λij forms a matrix denoted as (λij)2 × 3 since i ∈ {P, B, N},

and j ∈ {P, N}. Normally, the costs of a right decision are less than

those of a wrong decision, and therefore λPP ≤ λBP ≤ λNP and λNN ≤
λBN ≤ λPN.

Based on the properties of DTRS, thresholds (α, β) can be deter-

mined using the cost matrix (λij)2 × 3 since i ∈ {P, B, N} and j ∈ {P, N}

can be described as follows:

α = λPN − λBN

(λPN − λBN) + (λBP − λPP)
(1)

β = λBN − λNN

(λBN − λNN) + (λNP − λBP)
(2)

2.2. Three-way decision model based on the CCA

For three-way decision models, the acquisition of a set of pairs

of thresholds (α, β) presents a major challenge. Thresholds are cal-

culated by minimizing the decision loss [1]. The CCA is a constructive

supervised learning algorithm that maps all samples in the data set to

an n + 1-dimensional sphere Sn + 1. Sphere neighborhoods are used

to classify the samples [42]. The CCA can construct neural networks

(NNs) based on sample characteristics. Three-way decision models

based on the CCA do not need the thresholds (α, β). Details of the

CCA are presented below.

Definition 2.1 (Cover). Assume that the domain of input vectors is a

bounded set X of an n-dimensional space. A transformation T can be

defined as:

T : X → Sn+1, T(x) = (x,
√

γ (ϕ)2 − |x|2), x ∈ X (3)

In this way, all points in X are projected upward onto Sn+1 by

transformation T. Notably, in this situation, a neuron (ω, ϕ) corre-

sponds to a characteristic function of a ”sphere neighborhood” on

Sn+1 with ω as its center and γ (ϕ) as its radius. This sphere neigh-

borhood can cover a number of input vectors belonging to the same

class t. This sphere is therefore called a cover, c(t).

Given a set of training samples X = {x1, x2, . . . , xn}, (i =
1, 2, . . . , n), which is the set in n-dimensional Euclidean space.

Then Ai = {A1
i
, A2

i
, . . . , Am

i
} is an m-dimensional characteristic at-

tribute of the ith sample. The CCA finally obtains a set of covers

C = {C1
1 ,C1

2 , . . . ,C1
s1

,C2
1 ,C2

2 , . . . ,C2
s2

, . . . ,Ck
1
,Ck

2
, . . . ,Ck

sk
}, where C

j
i

rep-

resents the ith cover of the jth category. It is assumed that C j = ⋃
C

j
i
,

i = {1, 2, . . . , s j}. Cj represents all covers of the jth category samples.

In a three-way decision model, only two categories y1 and y2

are assumed. Each category has at least one cover. The covers of

Cy1 and Cy2 are {Cy1
1

,C
y1
2

, . . . ,C
y1
r } and {Cy2

1
,C

y2
2

, . . . ,C
y2
s }, respec-

tively, i.e., Cy1 = {Cy1
1

,C
y1
2

, . . . ,C
y1
r }, Cy2 = {Cy2

1
,C

y2
2

, . . . ,C
y2
s }. POS(Cy1)

is defined by the difference of unions
⋃

C
y1
i

− ⋃
C

y2
j

, NEG(Cy1) by
⋃

C
y2
j

− ⋃
C

y1
i

, and BND(Cy1) by the rest, where i = {1, 2, . . . , s}, j =
{1, 2, . . . , t}. Likewise, POS(Cy2) is equal to NEG(Cy1); NEG(Cy2) is

equal to POS(Cy1); and BND(Cy1) is equal to BND(Cy2).

3. Multi-granular theory based on the CCA

In this section, a MGTD model is proposed to reduce boundary re-

gions, and its advantages over other three-way decision algorithms

are demonstrated. The MGTD is based on the multiple-views of gran-

ularity in the CCA (MVCA). Therefore, the principle of MVCA will be

introduced, and then MGTD will be described in detail.

3.1. Multiple-views of granularity in the CCA

In real-world decision making, it is possible to consider multiple-

views that eventually lead to two-way decisions. With each view,

more new information is acquired. This paper presents a new ap-

proach using the notion of multiple-views of granularity. The whole

attribute set of samples is divided into different subsets, with each

subset representing a view of granularity. According to the defini-

tion of the pairs of HPs, diversity information will be obtained more

and more accurately. The MVCA is proposed. The definition of HPs and

their attribute bias is presented below.

Definition 3.1 (Pairs of Heterogeneous Points (HPs)). Assume that

there is a sample set X = {x1, x2, . . . , xn}, where n is the number of

samples, and let attribute set A = {A1, A2, . . . , Am}, where m is the

number of attributes. For ∀xi ∈ X, ∃xj ∈ X, such that y(xi) �= y(xj) sat-

isfy:

HPs(i, j) = {(xi, x j)|∀k, xk ∈ X, d(xi, x j) ≤ d(xi, xk), y(xk)

= y(x j) �= y(xi)} (4)

where y(xi) is the class of sample xi and d(xi, xj) denotes the Euclidean

distance between xi and xj. Sample xj is the nearest sample to sample

xi. Therefore, (xi, xj) is called a pair of HPs. In Fig. 1, the nearest other

sample to sample 1 is sample a, and therefore (1, a) is HPs. Likewise,

(2, b), (3, c), (4, d) are HPs.
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