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a b s t r a c t

Normalization models of visual sensitivity assume that the response of a visual mechanism is scaled divi-
sively by the sum of the activity in the excitatory and inhibitory mechanisms in its neighborhood. Nor-
malization models of attention assume that the weighting of excitatory and inhibitory mechanisms is
modulated by attention. Such models have provided explanations of the effects of attention in both
behavioral and single-cell recording studies. We show how normalization models can be obtained as
the asymptotic solutions of shunting differential equations, in which stimulus inputs and the activity
in the mechanism control growth rates multiplicatively rather than additively. The value of the shunting
equation approach is that it characterizes the entire time course of the response, not just its asymptotic
strength. We describe two models of attention based on shunting dynamics, the integrated system model
of Smith and Ratcliff (2009) and the competitive interaction theory of Smith and Sewell (2013). These
models assume that attention, stimulus salience, and the observer’s strategy for the task jointly deter-
mine the selection of stimuli into visual short-term memory (VSTM) and the way in which stimulus rep-
resentations are weighted. The quality of the VSTM representation determines the speed and accuracy of
the decision. The models provide a unified account of a variety of attentional phenomena found in psy-
chophysical tasks using single-element and multi-element displays. Our results show the generality and
utility of the normalization approach to modeling attention.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Normalization, or divisive normalization, models offer a simple
and powerful formalism for characterizing a variety of visual phe-
nomena, including the effects of covert attention. Normalization
models have provided theoretical accounts of such diverse phe-
nomena as lightness adaptation (Sperling & Sondhi, 1968), contrast
sensitivity (Heeger, 1991, 1992) and contrast gain control (Geisler
& Albrecht, 1997; Ross & Speed, 1991; Scholl, Latimer & Priebe,
2012; Wilson & Kim, 1998), pattern masking (Foley, 1994), effi-
cient, decorrelated encoding of natural images (Schwartz &
Simoncelli, 2001), and the psychophysics and neural correlates of
attention (Boynton, 2005; Herrmann, Heeger & Carrasco, 2012;
Herrmann, Montaser-Kouhsari, Carrasco, & Heeger, 2010; Lee,
Itti, Koch, & Braun, 1999; Lee & Maunsell, 2009; Reynolds &
Heeger, 2009). Carandini and Heeger (2012) surveyed the range
of applications of normalization models and argued that normali-
zation should be viewed as a ‘‘canonical neural computation.’’

Computationally, the idea expressed in normalization models is
that the response of a visual mechanism coding a target stimulus is
modulated divisively by the sum of the activity in other mecha-
nisms in its neighborhood. In normalization models of lightness
adaptation and gain control, the divisive input depends on the con-
trast energy in the local surround; in models of masking and pat-
tern vision, it depends on the activity in a local population of
spatial-frequency and orientation tuned filters. Unlike traditional
linear system models of vision (e.g., Campbell & Robson, 1968),
in which one stimulus can influence the visual response to another
stimulus only if their associated receptive fields have overlapping
bandwidths, normalization models allow for a form of global influ-
ence that extends outside the classical receptive field (Foley, 1994;
Heeger, 1991, 1992). They explain, for example, how the visual
response to a grating stimulus can be influenced by the properties
of a stimulus oriented at 90� to it.

In this article, we investigate the temporal dynamics of normal-
ization and show how the scope of normalization models can be
greatly expanded if they are formulated dynamically. The key the-
oretical insight provided by normalization models of attention is
that the sensory representations of stimuli depend on nonlinear
interactions between stimuli and their surrounds, and these
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interactions can be modulated by attention. We show how normal-
ization models can be obtained computationally as the asymptotic
or steady-state solutions of a class of biologically-plausible sys-
tems of differential equations known as shunting equations
(Grossberg, 1980). Whereas normalization models characterize
the steady-state properties of the system, the solutions of the asso-
ciated shunting equations characterize its entire time course.
Formulating a model dynamically makes it possible to view a wide
range of attentional phenomena as expressions of a common set of
processing mechanisms, of which normalization is one
manifestation.

In the second part of this article, we review some of these
phenomena and describe two models, one proposed by Smith
and Ratcliff (2009) and the other proposed by Smith and Sewell
(2013), to account for them. Both models use shunting equations
to describe the formation of the stimulus representations that
support perceptual decision making. Although the models and
the experimental phenomena they seek to explain have been dis-
cussed in previous articles, our presentation here serves both to
highlight the unity of the underlying theoretical and computa-
tional principles and to emphasize the relationship among what
might otherwise seem a diverse and unrelated set of experimen-
tal findings. Some of these phenomena may not seem closely
related to normalization, but we argue that they can all be
viewed as manifestations of attentionally modulated shunting
dynamics.

An additional aim of the article is to provide a partial refor-
mulation of the Smith and Ratcliff (2009) and Smith and Sewell
(2013) models in order to clarify the relationship between them
and to make them consistent with one another. The reformula-
tion also provides an explicit mathematical expression of a theo-
retical principle that was only represented implicitly in the
previous published versions of the models, namely, that stimulus
selection and stimulus identification are carried out by visual
pathways that code different aspects of the stimulus. Our aim
in elaborating the models in this way is to emphasize their
relationship to other current normalization models in the
literature.

2. Normalization and shunting dynamics

Normalization models have provided successful descriptions of
visual processes at different levels of analysis, ranging from the
contrast sensitivity of single neurons to behavioral responses in
perceptual judgment tasks. Normalization describes how the
response, Ri, of one of a set of mechanisms, i, to a stimulus depends
on the responses of other members of the set to the components of
the stimulus, denoted Ij. In a typical normalization model, the
response is described by an equation of the form

Ri ¼
Ip

i

ai þ
P

jbjIj

� �q : ð1Þ

In this equation, ai is a constant that depends on the mechanism but
is independent of the stimulus and the exponents p and q character-
ize the nonlinearities of the response. Typically they are power
functions of low order (e.g., around 2), which may be equal to each
other or different, depending on the setting.

Probably the simplest normalization model is the ubiquitous
Naka–Rushton/Michaelis–Menton model of contrast gain control
(Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982; Kaplan,
Lee & Shapley, 1990; Ross & Speed, 1991; Sclar, Maunsell &
Lennie, 1990; Scholl, Latimer & Priebe, 2012),

RðcÞ ¼ a
c2

cin þ c2 : ð2Þ

In this equation, c is stimulus contrast and RðcÞ is the associated
perceptual response. The gain control model states that the contrast
response is a nonlinear, saturating function of contrast power or
energy, c2. The constant a determines the saturation point and
the constant cin, which represents the aggregated effects of inhibi-
tion, determines the horizontal position of the function on the
log-contrast axis. The inhibitory constant can be written as
cin ¼ c2

0:5, where c0:5 is a semisaturation constant that characterizes
the contrast at which RðcÞ attains half its maximum value.

Heeger (1991, 1992) proposed a normalization model of cortical
simple and complex cell responses of the form of Eq. (1). The gen-
eral form of the equation in Heeger’s model is

RiðtÞ ¼
EiðtÞ

ai þ
P

jEjðtÞ
; ð3Þ

where EiðtÞ is the time-varying response of a spatiotemporally
tuned mechanism. In Heeger’s model simple cell, EiðtÞ is the ampli-
tude response of a half-squared linear operator with a specified spa-
tial frequency and orientation tuning and a specified phase. (We
have simplified Heeger’s notation a little for ease of exposition.)
The half-squared operator behaves like a half-wave rectifier in that
the mechanism responds selectively to either positive or negative
contrast excursions, depending on its phase, consistent with the fact
that neurons only respond either to contrast increments or decre-
ments. The use of a half-squaring operator instead of a half-wave
rectifying operator means that the response to low-intensity stimuli
is less than would otherwise be the case, which is consistent with
both the physiology (Heeger, 1991, 1992) and the psychophysics
(Laming, 1986).

The sum in the denominator of Eq. (3) is over a set of four mech-
anisms whose phases vary in steps of 90�. The sum is proportional
to the Fourier energy in the stimulus, which means the amplitude
response of the model simple cell in Eq. (3) is normalized by stim-
ulus energy. Heeger’s model complex cell is obtained by summing
four simple cells with orthogonal phases (0�, 90�, 180� and 270�).
The response of the model simple cell depends on the amplitude
of the stimulus and is sensitive to its phase or contrast polarity;
the response of the model complex cell depends only on the overall
stimulus contrast energy.

Foley (1994) proposed a masking model influenced by Heeger’s
work, which is related to Eq. (1). Foley’s Model 2 has the form

R ¼
bEcþ
� �p

Z þ
P

jbIjcþ
� �q ; ð4Þ

where E ¼
P

kSE;kck, and Ij ¼
P

kSI;jkck are weighted sums of the k
components of the stimulus, which individually have contrast ck.
The weights characterize the sensitivities of excitatory and inhibi-
tory mechanisms: SE;k is the excitatory sensitivity to the k-th stim-
ulus component and SI;jk is the inhibitory sensitivity of the j-th
divisive input to this same stimulus component. The notation
b�cþ ¼maxð:;0Þ, denotes half-wave rectification, which has similar
properties to the half-squaring operator in Heeger’s model, except
that the response is a linear rather than a nonlinear function of
the stimulus strength. Models related to Eq. (4) continue to be influ-
ential in contemporary accounts of masking (e.g., Meese & Holmes,
2010).

2.1. Normalization models of attention

The effects of attention can be incorporated into normalization
models in a very natural way by assuming that the excitatory and
inhibitory components of the normalization equation are weighted
by attention in some way, where the weights depend on the allo-
cation of attention in space (or feature space). Lee et al. (1999) pro-
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