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a b s t r a c t 

We introduce the OWA operator and note that it provides a parameterized class of aggregation operators. 

Here the parameterization is accomplished by the choice of the characterizing OWA weights, different 

characterizing weights results in different aggregation imperatives. We discuss various ways of provid- 

ing these characterizing OWA weights. Most notable among these are the use of a vector containing the 

prescribed weights and the use of a function called the weight generating function from which the char- 

acterizing can be extracted. In many applications we are faced with situations in which the arguments 

being aggregated have different importances. This raises the issue of appropriately combining the indi- 

vidual argument weights with the characterizing weights of the operator to obtain operational weights 

to be used in the actual aggregation. Our goal here is looking at this issue under different methods of 

specification of the characterizing weights. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In [1] we introduced the Ordered Weighted Average (OWA) op- 

erator. The OWA operator provides a parameterized class of mean- 

like operators which can be used to aggregate a collection of ar- 

guments. The parameterization is accomplished by the choice of 

the characterizing OWA weights that are multiplied by the argu- 

ment values in a linear type aggregation. A unique feature of the 

OWA operator is that the association of these weights with the ar- 

guments is based on an ordering of the arguments determined by 

the argument magnitudes. One popular use of the OWA operator 

is for multi-criteria decision making, here the arguments are the 

satisfactions to each of the relevant criteria by a given decision 

alternative, x , and the aggregated value is the overall satisfaction 

of the alternative x to the collection of criteria. An important fea- 

ture of a multi-criteria decision problem is the decision imperative, 

the procedure used for combining an alternative’s satisfactions to 

the individual criteria to obtain its overall satisfaction to the deci- 

sion problem. The parameterization of the OWA operator provides 

it with the ability to model in a unified manner various different 

types of decision imperatives by the choice of the characterizing 

OWA weights. Another aspect of the multi-criteria decision prob- 
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lem is that often the criteria have different im portance weights. 

This raises the issue of how to combine these criteria importance 

weights with the characterizing OWA weights used to implement 

the decision imperative in a manner to that can be used in the 

OWA aggregation framework. Our interest is to look at this prob- 

lem of OWA aggregation in the case of importance weighted argu- 

ments [1–9] . 

2. The OWA operator 

In the following we provide the definition of the OWA aggrega- 

tion operator. 

Definition. An OWA operator of dimension n is defined in terms 

of a collection of n weights w j for j = 1 to n such that each 

w j = [0, 1] and 

∑ n 
j=1 w j = 1. The OWA aggregation of a collec- 

tion of numeric arguments, ( a 1 , …, a n ) is defined as OWA( a 1 , …, 

a n ) = 

∑ n 
j=1 w j a id ( j ) where id is an index function so that id ( j ) is 

the j th largest argument value. 

The OWA operator can be shown to have the following 

properties [1] 

(1) Monotonicity : OWA( a 1 , …, a n ) ≥ OWA( b 1 , …, b n ) if a i ≥ b i 
for all i 

(2) Boundedness: Min i [ a i ] ≤ OWA( a 1 , …, a n ) ≤ Max i [ a i ] 

(3) Symmetry : The initial indexing of the arguments is irrele- 

vant 

(4) Idempotency : OWA( a 1 , …., a n ) = a if all a i = a 
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The satisfaction of these properties implies that the OWA oper- 

ator is a mean or averaging operator [10] . 

In the special case when the arguments, the a i , are contained 

in the interval [0, 1] then OWA[ a 1 , …, a n ] ∈ [0, 1] and then since 

in this case the OWA also has the following properties 

(1) OWA(0, …, 0) = 0 

(2) OWA(1, …, 1) = 1 

(3) Monotonicity 

then the OWA operator is also an aggregation operators as defined 

in [10–12] . 

We can provide a vector formulation of this operator. Let W = [w 1 

w n 

]
be an n -vector called the weighting vector. Let B = 

[a id(1) 

a id(n ) 

]
be 

an n -vector called the ordered argument vector. Using these we 

can express OWA( a , …, a ) = W 

T B 

Example. Assume n = 4 and w 1 = 0.3, w 2 = 0.2, w 3 = 0.4, 

w 4 = 0.1 and our arguments are a 1 = 60, a 2 = 70, a 3 = 40, 

a 4 = 80. In this case id (1) = 4, id (2) = 2, id (3) = 1, and id (4) = 3 

hence W = 

⎡ ⎣ 

0 . 3 
0 . 2 
0 . 4 
0 . 1 

⎤ ⎦ and B = 

⎡ ⎣ 

80 
70 
60 
40 

⎤ ⎦ and we get 

OWA ( a 1 , a 2 , a 3 , a 4 ) = [ 0 . 30 . 20 . 40 . 1 ] 

⎡ ⎢ ⎢ ⎢ ⎣ 

80 

70 

60 

40 

⎤ ⎥ ⎥ ⎥ ⎦ 

= ( 0 . 3 ) ( 80 ) + ( 0 . 2 ) ( 70 ) + ( 0 . 4 ) ( 60 ) 

+ ( 0 . 1 ) ( 40 ) OWA ( a 1 , a 2 , a 3 , a 4 ) 

= 24 + 14 + 24 + 4 = 66 

We emphasize that there are no restrictions on the numeric ar- 

guments in the OWA operator, they can be positive or negative and 

can be any real number. We note that while in many applications 

we consider that the argument values are drawn from the unit in- 

terval this is not necessary. 

At times, when we want to emphasize which OWA weighting 

vector is being used, we shall use the notation OWA W 

to highlight 

that W is the weighting vector. 

If the OWA operator has weighting vector W = 

[w 1 

w n 

]
then the 

dual OWA operator ̂ OWA has weighting vector ˆ W = 

[w n 

w 1 

]
that 

is if ˆ w j indicates the weights of the dual OWA operator then 

ˆ w j = w n − j + 1 
We note that in the special case when the a i ∈ [0, 1] we show 

below that 

OW A W 

( a 1 , . . . , a n ) = 1 − OW A ˆ W 

(1 − a i , . . . , 1 − a n ) 

Proof. Let us denote b i = 1 − a i . Consider OWA ˆ W 

( b 1 , …, b n ). We 

see that OWA ˆ W 

( b 1 , …, b n ) = 

∑ n 
j=1 w j 

� 

b id ( j ) when 

̂ id is the ordering 

function on the b i . However since the order of the b i is dual to the 

order of the a j we see that ̂ id ( j ) = n − id ( j ) + 1. Here then 

OW A ˆ W 

(b 1 , . . . , b n ) = 

n ∑ 

j=1 

ˆ w j b n −id ( j )+1 = 

n ∑ 

j=1 

ˆ w j (1 − a n −id ( j )+1 ) 

= 

n ∑ 

j=1 

ˆ w j −
n ∑ 

j=1 

ˆ w j a n −id ( j )+1 

= 1 −
n ∑ 

j=1 

w j − j +1 a n −id ( j )+1 

= 1 −
n ∑ 

k =1 

w k a id(k ) = 1 − OWA W 

(a 1 , . . . , a n ) 

In the case where we restrict ourselves to arguments that are 

in the unit interval we can introduce various generalization of the 

OWA operator [10,13] . 

Generalized OWA Operator. If g : [0, 1] → [ −∞ , ∞ ] is a continu- 

ous strictly monotonic function and W is an OWA weighting vector 

the function OWA( a 1 , …, a n ) = g −1 ( 
∑ n 

j=1 w j g( a id ( j ) ) ) is called the 

generalized OWA operator. 

A special case of this is the power-based generalized OWA op- 

erator. Here, for any real number r ∈ R we have 

Power OWA ( a , . . . , a ) = 

( 

n ∑ 

j=1 

w i ( a id ( j ) ) 
r 

) 1 /r 

Another related operator is the ordered weight geometric func- 

tion 

OWG( a 1 , . . . , a n ) = 

n ∏ 

j=1 

( a id ( j ) ) 
w j 

For the most part in the following we shall focus on the stan- 

dard OWA operator and also restrict ourselves to the case where 

the argument values, the a i ∈ [0, 1]. 

The OWA operator provides a parameterized class of aggrega- 

tion operators that are parameterized by the choice of weighting 

vector. Different weighting vectors result in different formulation 

of the OWA operator. Let us look at the formulation of OWA aggre- 

gation for some notable examples of weighting vectors 

1. The vector W 

∗ has w 1 = 1 and w j = 0 for j � = 1. In this case 

we get OWA W 

∗ ( a 1 , …, a n ) = Max i [ a i ]. 

2. The vector W ∗ has w n = 1 and w j = 0 for j � = n . In the case 

OWA W ∗ ( a 1 , …, a n ) = Min i [ a i ]. 

We easily see that these are the bounding weighting vectors 

and for any weighting vector W 

OWA W ∗ ( a 1 , . . . , a ) ≤ OW A W 

( a 1 , . . . a n ) ≤ OWA W 

∗ ( a 1 , . . . , a n ) 

Closely related to these are the family of vectors W [ K ] defined 

such that w K = 1 and w j = 0 for j � = K . In this case we easily see 

OWA W [ K] 
( a 1 , …, a n ) = a id(K) the k th largest argument. We note that 

W 

∗ = W [1] and W 

∗ = W [ n ] . Furthermore there is a simple order- 

ing among these OWA W [ K] 
so if K 1 ≤ K 2 the OWA W [ K 2 ] 

( a 1 , …, a n ) ≥
OW A W [ K 2 ] 

( a 1 , …, a n ). 

Another special case of this class is the median type operator. 

Here if n is odd the Med( a 1 , …, a n ) corresponds to the vector W [ K ] 

where K = 

n + 1 
2 , If n is even the median uses the vector W Med 

which has w n /2 = 0.5 and w n /2 + 1 = 0.5 and all other w j = 0. 

Another important special case is W A where w j = 1/ n for all j . 

Here, we get OWA W A 
[ a , …, a ) = 

1 
n 

∑ n 
j=1 a j , it is the simple average 

of the arguments. 

Another example of OWA operator is the Arrow–Hurwicz aver- 

age. Here, W is such that w 1 = α and w n = 1 − α and all other 

w j = 0. In this case 

OWA W 

(a 1 , . . . , a n ) = αMax i [ a i ] + (1 − α) Min i [ a i ] 

In [1] Yager suggested two measures, dependent on the 

weighted vector, for characterizing the OWA operator. The 

first of these is called the attitudinal character defined as 

AC( W ) = 

∑ n 
j=1 

n − j 
n −1 w j . Essentially the attitudinal character provides 

some information about the preference of the OWA operator for 

giving more weight to the bigger or smaller argument values. The 

closer AC( W ) to one the more preference to bigger argument values 

while values of AC( W ) closer to zero indicate a preference is given 

the smaller argument values. We note that a value of AC( W ) close 

to 0.5 indicates the aggregation is neutral with respect to showing 
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