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a b s t r a c t

We define in this work a new localized version of a Vapnik–Chervonenkis (VC) complexity, namely the
Local VC-Entropy, and, building on this new complexity, we derive a new generalization bound for binary
classifiers. The Local VC-Entropy-based bound improves on the original Vapnik’s results because it is able
to discard those functions that, most likely, will not be selected during the learning phase. The result
is achieved by applying the localization principle to the original global complexity measure, in the same
spirit of the Local Rademacher Complexity. By exploiting and improving a recently developed geometrical
framework, we show that it is also possible to relate the Local VC-Entropy to the Local Rademacher
Complexity by finding an admissible range for one given the other. In addition, the Local VC-Entropy
allows one to reduce the computational requirements that arise when dealingwith the Local Rademacher
Complexity in binary classification problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In learning systems, the development of effective measures
for assessing the complexity of hypothesis classes is fundamental
for enabling a precise control of the outcome of the learning
process. One of the first attempts was made several decades ago,
with the theory developed by V.N. Vapnik and A.Y. Chervonenkis,
who proposed, among the others, the well-known VC-Dimension
(Vapnik, 1998; Zhang, Bian, Tao, & Lin, 2012; Zhang & Tao, 2013).
The VC-Dimension defines the complexity of a hypothesis class as
the cardinality of the largest set of points that can be shattered
by functions of the class. Unfortunately, the VC-Dimension, like
other measures, is a global one, because it takes into account all
the functions in the hypothesis class, and, furthermore, is data-
independent, because it does not take into account the actual
distribution of the data available for learning. As a consequence
of targeting this worst-case learning scenario, the VC-Dimension
leads to very pessimistic generalization bounds.

In order to deal with the second issue, effective data-dependent
complexity measures have been developed, which allow to take
into account the actual distribution of the data and produce
tighter estimates of the complexity of the class. As an example,
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data-dependent versions of the VC Complexities have been
developed in Boucheron, Lugosi, and Massart (2000), Shawe-
Taylor, Bartlett, Williamson, and Anthony (1998) and together
with the Rademacher Complexity (Bartlett & Mendelson, 2003;
Koltchinskii, 2001) they represent the state-of-the-art tools in this
field.

In recent years, the Rademacher Complexity has been further
improved, as researchers have succeeded in developing local data-
dependent complexitymeasures (Bartlett, Bousquet, &Mendelson,
2002, 2005; Cortes, Kloft, &Mohri, 2013; Koltchinskii, 2006; Oneto,
Ghio, Ridella, & Anguita, 2015b; van deGeer, 2006). Localmeasures
improve over global ones thanks to their ability of taking into
account only those functions of the hypothesis class that will
be most likely chosen by the learning procedure, i.e. the models
with small error. In particular, the Local Rademacher Complexity
has shown to be able to accurately capture the nature of the
learning process, both from a theoretical point of view (Bartlett
et al., 2005; Koltchinskii, 2006; Oneto et al., 2015b) and in real-
world applications (Cortes et al., 2013; Kloft & Blanchard, 2011;
Lei, Binder, Dogan, & Kloft, 2015; Steinwart & Scovel, 2005).

We propose in this work a localized version of a VC Complexity,
namely the Local VC-Entropy, and show how it can be related
to the Local Rademacher Complexity through an extension of
the geometrical framework presented in Anguita, Ghio, Oneto,
and Ridella (2014). Getting more insights on the mechanisms
underlying different notions of complexity, and the non-trivial
relationships among them, is crucial, both from a theoretical and
a practical point of view. In fact, for this reason, the literature
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targeting the connections between different complexity measures
is quite large (Bousquet, 2002; Ledoux & Talagrand, 1991; Lei,
Ding, & Bi, 2015; Massart, 2000; Sauer, 1972; Shelah, 1972; Srebro,
Sridharan, & Tewari, 2010; Vapnik, 1998). Finally, we show how
to exploit the Local VC-Entropy for bypassing the computational
difficulties that arise when computing the Local Rademacher
Complexity in binary classification problems.

The localization of the VC-Entropy allows us to introduce
the same improvements achieved by the localization of the
Rademacher Complexity into the VC Theory as well, like, for
example, the derivation of refined generalization bounds with
respect to their global counterparts. In fact, based on this new
localized notion of complexity, we propose a new generalization
bound that does not take into account all the functions in the set
but only the ones with small error.

The paper is structured as follows. In Section 2 we introduce
the theoretical framework and the two localized notions of
complexity, i.e. the Local Rademacher Complexity and the new
Local VC-Entropy. In Section 3 we propose a new bound on the
generalization error based on the Local VC-Entropy and we show
that this new bound is actually able to discard those functions that
will be never chosen by the algorithm for classification purposes
but are usually considered for estimating the generalization
error. Section 4 is devoted to the connections between the
Local Rademacher Complexity and the new Local VC-Entropy,
by exploiting a geometrical framework introduced in Anguita
et al. (2014), which deals only with the global version of these
complexities. In Section 5 we show the computational advantages
of the Local VC-Entropy with respect to the Local Rademacher
Complexity. Section 6 concludes the paper.

2. A local Vapnik–Chervonenkis complexity

Letµ be a probability distribution overX×Y whereY = {±1}.
We denote as F a class of {±1}-valued functions f ∈ F on X, and
suppose that Dn = {(X1, Y1) , . . . , (Xn, Yn)} with n > 1 is sampled
according to µ. The accuracy of an f ∈ F in representing µ is
measured according to the indicator function I (f (X), Y ) =

1−Yf (X)

2 ,
namely I(f (X), Y ) = 0 if f (X) = Y and I(f (X), Y ) = 1 if f (X) ≠

Y . Consequently, the empirical errorLn(f ) and the generalization
error L(f ) of an f ∈ F can be defined as:

Ln(f ) =
1
n

n
i=1

I (f (Xi), Yi) , (1)

L(f ) = E(X,Y )I(f (X), Y ). (2)

Let us define the following quantity:

FDn = {{f (X1), . . . , f (Xn)} : f ∈ F } , (3)

which is the set of functions restricted to the sample. In other
words, FDn is the set of distinct functions distinguishable within
F with respect to the dataset Dn. The VC-Entropy Hn(F ) and
the Annealed VC-Entropy An(F ), together with their empirical
counterpartsHn(F ) andAn(F ) (Vapnik, 1998), are defined as:

Hn(F ) = EX1,...,Xn
Hn(F ), Hn(F ) = ln

FDn

 , (4)

An(F ) = ln

EX1,...,Xn

FDn

 , An(F ) = Hn(F ). (5)

Let {σ1, . . . , σn} be n independent Rademacher random variables
for which P{σi = +1} = P{σi = −1} = 1/2. Then, the Rademacher
Complexity Rn(F ) (Bartlett & Mendelson, 2003; Koltchinskii,
2001), and its deterministic counterpart Rn(F ), are defined as:

Rn(F ) = Eσ sup
f∈F

2
n

n
i=1

I(f (Xi), σi), (6)

Rn(F ) = EX1,...,Xn
Rn(F ). (7)

Note that the definition of Rademacher Complexity adopted in this
paper is in agreement with the one that appeared in the recent lit-
erature (Anguita et al., 2014; Bartlett &Mendelson, 2003; Koltchin-
skii, 2001; Oneto, Ghio, Ridella, & Anguita, 2015a), in fact:

Eσ sup
f∈F

2
n

n
i=1

I(f (Xi), σi) = Eσ sup
f∈F

1
n

n
i=1

σif (Xi). (8)

The Local Rademacher Complexity LRn(F , r) (Bartlett et al.,
2005; Koltchinskii, 2006), together with its expected value
LRn(F , r), is defined as:LRn(F , r) =Rn


f : f ∈ F ,Ln(f ) ≤ r


, (9)

LRn(F , r) = Rn ({f : f ∈ F , L(f ) ≤ r}) . (10)

The Local Rademacher Complexity improves over its global
counterpart thanks to its ability of taking into account only those
functions of the hypothesis class that will be most likely chosen by
the learning procedure. This is due to the fact that in the definitions
of Eqs. (9) and (10) the r parameter shrinks the hypothesis space by
discarding the functions with large error. r is connected with the
generalization ability of an f ∈ F , as we will see in Theorem 3.5.
Note, again, that the definitions of Local Rademacher Complexity of
Eqs. (9) and (10) are in agreement with the ones that appeared in
the recent literature (Bartlett et al., 2005; Koltchinskii, 2006; Oneto
et al., 2015b), in fact:LRn(F , r) = Eσ sup

f∈


f : f∈F , 1

n

n
i=1

[I(f (Xi),Yi)]2≤r



×
1
n

n
i=1

I(f (Xi), σi), (11)

and

LRn(F , r) = EX1,...,XnEσ sup
f∈{f : f∈F , E(X,Y )[I(f (X),Y )]2≤r}

×
1
n

n
i=1

I(f (Xi), σi), (12)

since I(f (Xi), Yi) ∈ {0, 1} and, therefore, [I(f (Xi), Yi)]
2

= I(f (Xi),

Yi). Consequently, in this paper the definitions of Local Rademacher
Complexity are not referred to (F ) but to (I ◦ F ) since, as we will
show in the next section, in this paper we are interested in relating
the local complexity measures to the generalization error.

In the framework of theVCTheory, to the best of our knowledge,
such approach has never been proposed: in fact, the VC Theory
takes into account the whole hypothesis space.

In a recent preprint and unpublished article (Lei, Ding et al.,
2015) an attempt of estimating the Local Rademacher Complexity
via a Covering Number-based (Zhou, 2002) upper-bound has been
made, but it still relies on the original work on Local Rademacher
Complexity (Bartlett et al., 2005).

In this paper we propose, instead, a localized version of a
complexity measure based on the VC Theory and show that it
can be effectively exploited in learning theory for deriving a
new generalization bound. This complexity measure extends the
proposal of Vapnik (1998) by introducing the notion of localization
in the traditional Vapnik’s Statistical Learning Theory framework.

Let us localize the set of functions defined in Eq. (3) by
introducing a constraint on the error, controlled by a parameter r:F(Dn,r) =


{f1, . . . , fn} : f ∈ F ,Ln(f ) ≤ r


, (13)

F(Dn,r) = {{f1, . . . , fn} : f ∈ F , L(f ) ≤ r} , (14)
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